MATH 101: COMPUTING ANTI-DERIVATIVES BY MASSAGING

LIOR SILBERMAN, UBC

In this note I collect a few examples of computing indefinite integrals by "massaging" a function whose derivative is similar to the desired result. The writing is pedagogical (illustrating thinking) rather than exam-motivated.

Problem 1. Compute $\int 7e^{-x/3} dx$.

Solution: We recall that $(e^x)' = e^x$, so we try $e^{-x/3}$, where we get $(e^{-x/3})' = -\frac{1}{3}e^{-x/3}$. Solving for $e^{-x/3}$ we find $e^{-x/3} = -3(e^{-x/3})' = (-3e^{-x/3})'$

and so

$$7e^{-x/3} = -21\left(e^{-x/3}\right)' = \left(-21e^{-x/3}\right)'$$

We conclude that

$$\int 7e^{-x/3} \, \mathrm{d}x = -21e^{-x/3} + C \, .$$

Problem 2. Compute $\int \frac{1}{1+4x^2} dx$.

Solution: We recall that $(\arctan x)' = \frac{1}{1+x^2}$. Since we need to get $\frac{1}{1+(2x)^2}$ we try $\arctan(2x)$. By the chain rule, $(\arctan(2x))' = 2 \cdot \frac{1}{1+(2x)^2} = \frac{2}{1+4x^2}$ so solving for $\frac{1}{1+4x^2}$ we see:

$$\int \frac{1}{1+4x^2} \, \mathrm{d}x = \frac{1}{2} \arctan(2x) + C \,.$$

Problem 3. Compute $\int \frac{\mathrm{d}x}{3x+1}$.

Solution 1: We remember that $(\log |x|)' = \frac{1}{x}$ so we try $\log |3x+1|$. By the chain rule, $(\log |3x+1|)' = \frac{3}{3x+1}$, so we divide by 3 to get

$$\frac{1}{3x+1} = \frac{1}{3} \left(\log|3x+1| \right)' = \left(\frac{1}{3} \log|3x+1| \right)'$$

 \mathbf{so}

$$\int \frac{\mathrm{d}x}{3x+1} = \frac{1}{3}\log|3x+1| + C.$$

Solution 2: We note that $\frac{1}{3x+1} = \frac{1}{3} \cdot \frac{1}{x+1/3}$. Again $(\log |x|)' = \frac{1}{x}$ but this also means $(\log |x + \frac{1}{3}|)' = \frac{1}{x+1/3}$ and we get:

$$\frac{1}{3x+1} = \frac{1}{3} \left(\log \left| x + \frac{1}{3} \right| \right)' = \left(\frac{1}{3} \log \left| x + \frac{1}{3} \right| \right)$$
$$\int \frac{\mathrm{d}x}{3x+1} = \frac{1}{3} \log \left| x + \frac{1}{3} \right| + C.$$

 \mathbf{so}

Problem. $\frac{1}{3} \log |3x+1|$ and $\frac{1}{3} \log |x+\frac{1}{3}|$ are different. How is that possible?

This note is specifically excluded from the terms of UBC Policy 81.

Answer: Both are correct. $\frac{1}{3} \log |3x+1| = \frac{1}{3} \log |3 \cdot (x+\frac{1}{3})| = \frac{1}{3} \left(\log 3 + \log |x+\frac{1}{3}| \right)$ so the two antiderivatives differ by the constant $\frac{1}{3} \log 3$ – which is how things should be!

Problem 4. Compute $\int \sin x \cos x \, dx$.

Solution: By the half-angle formula $2 \sin x \cos x = \sin(2x)$ this is $\int \frac{1}{2} \sin(2x) dx$. We know that $(\cos x)' = -\sin x$; replacing x with 2x gives $(\cos(2x))' = -2\sin(2x)$ and solving for $\sin(2x)$ we get

$$\frac{1}{2}\sin(2x) = -\frac{1}{4}(\cos(2x))' = \left(-\frac{1}{4}\cos(2x)\right)$$
$$\int \sin x \cos x \, dx = -\frac{1}{4}\cos(2x) + C.$$

 \mathbf{SO}