Lior Silberman's Math 539: Problem Set 2 (due 24/2/2016)

Dirichlet Characters

- 0. List all Dirichlet characters mod 15 and mod 16. Determine which are primitive.
- 1. Let χ be a non-principal Dirichlet character mod q, and let $n_{\chi} = \min\{n \ge 1 \mid \chi(n) \ne 1\}$. Show that n_{χ} is prime.
- 2. (Uniqueness of the conductor) Let $f: \mathbb{Z} \to \mathbb{C}$ satisfy f(a+N) = f(a) and f(a) = 0 whenever (a,N) > 1. Call *q* a *period* of *f* if f(a) = f(b) whenever $a \equiv b(q)$ and both *a*, *b* are prime to *N*.
 - (a) Suppose q_1, q_2 are periods of f, and let $q = \text{gcd}(q_1, q_2)$. Show that q is a period as well (hint: given a, b prime to N such that $a \equiv b(q)$ show that there are $x, y \in \mathbb{Z}$ such that $b a = xq_1 + yq_2$ with $a + xq_1$ prime to N).
 - (b) Show that there is a unique q = q(f) and a unique g: Z → C which is q-periodic, supported on integers prime to q and primitive (the only period of g is q) such that f(n) = g(n) for all n prime to N.
- 3. Fix q > 1.
 - (a) Let χ be a non-principal Dirichlet character mod q. Show that $\sum_{p} \frac{\chi(p)}{p}$ converges.
 - (b) Let (a,q) = 1. Show that $\sum_{p \equiv a(q), p \leq x} \frac{1}{p} = \frac{1}{\varphi(q)} \log \log x + O(1)$
 - (*c) Improve the error term to $C + O\left(\frac{1}{\log x}\right)$.

Counting with characters

Fix an odd prime *p*.

- 4. (The quadratic character) Recall that the group $U = (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1.
 - (a) Show that the map x → x² is a group homomorphism U → U with kernel of size 2, hence that the set S of squares mod p has order ^{p-1}/₂.
 (b) Note that U/S ≃ C₂ and obtain the *quadratic character* (Legendre symbol), a group ho-
 - (b) Note that $U/S \simeq C_2$ and obtain the *quadratic character* (Legendre symbol), a group homomorphism $\left(\frac{\cdot}{p}\right): U \to \{\pm 1\}$ such that $\left(\frac{a}{p}\right) = 1$ iff $x^2 = a$ is solvable in U.
 - (c) Write $\chi(a)$ for this character, and extend it to $\mathbb{Z}/p\mathbb{Z}$ by setting $\chi(0) = 0$. Show that $1 + \chi(a)$ is the number of solutions to $x^2 = a$ in $\mathbb{Z}/p\mathbb{Z}$.
 - (d) Consider the equation $x^2 + y^2 = c$ in $\mathbb{Z}/p\mathbb{Z}$ $(c \neq 0)$. Show that its number of solutions is $\sum_{a+b=c} (1+\chi(a))(1+\chi(b))$. Use the identity $\chi(a)\chi(b) = \chi\left(\frac{a}{c-a}\right)$ (if $a \neq c$) to show that $\sum_{a+b=c} \chi(a)\chi(b) = -\chi(-1)$ and hence that the equation has $p \chi(-1)$ solutions.

- 5. (A linearly uniform but quadratically non-uniform set) Fix a smooth cutoff function $\varphi \colon \mathbb{R}/\mathbb{Z} \to [0,1]$ supported on $[-\varepsilon \delta, \varepsilon + \delta]$ and identically equal to 1 on $[-\varepsilon, \varepsilon]$. For each prime *p* define $F(x) = \varphi\left(\frac{x^2}{p}\right)$ (this roughly locates those *x* such that x^2 has a representative within εp of zero).
 - (a) Show that $\left|\frac{1}{p}\sum_{x(p)}F(x)-\varepsilon\right| \le \delta + O\left(\frac{1}{\sqrt{p}}\right)$ and that for $k \ne 0(p), \frac{1}{p}\sum_{x(p)}F(x)e_p(-kx) = O_{\varphi}(\frac{1}{\sqrt{p}})$.
 - (b) Let $A_{\varepsilon} \subset \mathbb{Z}/p\mathbb{Z}$ be the set of x such that x^2 has a representative within εp of zero. Show that A_{ε} has density $\varepsilon + O(\delta)$ and has $\varepsilon^3 p^2 + O(\delta)p^2 + O_{\delta,\varepsilon}(p^{3/2})$ 3-APs.
 - (c) Establish the identity $x^2 3(x+d)^2 + 3(x+2d)^2 (x+3d)^2 = 0$ and conclude that if $x, x+d, x+2d \in A_{\varepsilon/7}$ then $x+3d \in A_{\varepsilon}$ and hence that the number of 3APs in A_{ε} is $\geq C\varepsilon^3 p^2$.
 - RMK If the count of 4APs was controlled by Fourier coefficients, we'd exepct $\varepsilon^4 p^2$ 4APs, and as $\varepsilon \to 0$ this is a very different number.

Fourier analysis on the circle

- 6. (Basics of Fourier series)
 - (a) Let $D_N(x) = \sum_{|k| \le N} e(kx)$ be the Dirichlet kernel. Show that $\int_0^1 |D_N(x)| dx \gg \log N$.
 - (b) Let $F_N(x) = \sum_{|k| < N} \left(1 \frac{|k|}{N} \right) e(kx)$ be the Fejér kernel. Show that for $\delta \le |x| \le \frac{1}{2}$, we have $|F_N(x)| \le \frac{1}{N \sin^2(\pi \delta)}$ so that for $f \in L^1(\mathbb{R}/\mathbb{Z})$,

$$\lim_{N\to\infty}\int_{\delta\leq |x|\leq \frac{1}{2}}|f(x)||F_N(x)|\,\mathrm{d} x=0\,.$$

- (c) In class we showed that "smoothness implies decay": if $f \in C^r(\mathbb{R}/\mathbb{Z})$ then for $k \neq 0$, $|\hat{f}(k)| \ll_r ||f||_{C^r} |k|^{-r}$. Show the following partial converse: if $|\hat{f}(k)| = O(k^{-r-\varepsilon})$ then $\sum_{k \in \mathbb{Z}} \hat{f}(k) e(kx) \in C^{r-1}(\mathbb{R}/\mathbb{Z})$.
- 7. (The Basel problem) Let f(x) be the Z-periodic function on R such that f(x) = x² for |x| ≤ 1/2.
 (a) Find f(k) for k ∈ Z.
 - (b) Show that $\zeta(2) = \frac{\pi^2}{6}$.
 - (c) Apply Parseval's identity $||f||_{L^2(\mathbb{R}/\mathbb{Z})} = ||\hat{f}||_{L^2(\mathbb{Z})}$ to evaluate $\zeta(4)$.
- 8. Let $\varphi \in \mathcal{S}(\mathbb{R})$.
 - (a) Let $c \in L^2(\mathbb{Z}/q\mathbb{Z})$. Show that $\sum_{n \in \mathbb{Z}} c(n) \varphi(n) = \sum_{k \in \mathbb{Z}} \hat{c}(-k) \hat{\varphi}(k/q)$.
 - (b) Let χ be a primitive Dirichlet character mod q. Show that

$$\sum_{n\in\mathbb{Z}}\chi(n)\varphi(n)=\frac{G(\chi)}{q}\sum_{k\in\mathbb{Z}}\bar{\chi}(k)\hat{\varphi}\left(\frac{k}{q}\right).$$

9. Combine the Vinogradov trick and the Burgress bound.

Application: Weyl differencing and equidistribution on the circle

- 10. (Equidistribution) Let X be a compact space, μ a fixed probability measure on X (thought of as the "uniform" measure). We say that a sequence of probability measures $\{\mu_n\}_{n=1}^{\infty}$ is *equidistributed* if it converges to μ in the weak-* sense, that is if for every $f \in C(X)$, $\lim_{n\to\infty} \mu_n(f) = \mu(f)$ (equivalently, if for every open set $U \subset X$, $\mu_n(U) \to \mu(U)$).
 - (a) Show that it is enough to check convergence on a set $B \subset C(X)$ such that $\text{Span}_{\mathbb{C}}(B)$ is dense in C(X).
 - (b) (Weyl criterion) We will concentrate on the case $X = \mathbb{R}/\mathbb{Z}$, $\mu = \text{Lebesgue}$. Show that in that case it is enough to check whether $\int_0^1 e(kx) d\mu_n(x) \xrightarrow[n \to \infty]{} 0$ for each non-zero $k \in \mathbb{Z}$. (Hint: Stone–Weierstrass)
 - DEF We say that a sequence $\{x_n\}_{n=1}^{\infty} \subset X$ is equidistributed (w.r.t. μ) if the sequence $\{\frac{1}{n}\sum_{k=1}^{n} \delta_{x_k}\}_{k=1}^{\infty}$ is equidistributed, that is if for every open set U the proportion of $1 \le k \le n$ such that $x_k \in U$ converges to $\mu(U)$, the proportion of the mass of X carried by μ .
 - (c) Let α be irrational. Show directly that the sequence fractional parts $\{n\alpha \mod 1\}_{n=1}^{\infty}$ is dense in [0,1].
 - (d) Let α be irrational. Show that the sequence of fractional parts $\{n\alpha \mod 1\}_{n=1}^{\infty}$ is equidistributed in [0,1].
 - (e) Returning to the setting of parts (a),(b). suppose that $supp(\mu) = X$. Show that every equidistributed sequence is dense.