Lior Silberman's Math 539: Problem Set 2 (due 24/2/2016)

Dirichlet Characters

0. List all Dirichlet characters mod 15 and mod 16. Determine which are primitive.
1. Let χ be a non-principal Dirichlet character $\bmod q$, and let $n_{\chi}=\min \{n \geq 1 \mid \chi(n) \neq 1\}$. Show that n_{χ} is prime.
2. (Uniqueness of the conductor) Let $f: \mathbb{Z} \rightarrow \mathbb{C}$ satisfy $f(a+N)=f(a)$ and $f(a)=0$ whenever $(a, N)>1$. Call q a period of f if $f(a)=f(b)$ whenver $a \equiv b(q)$ and both a, b are prime to N.
(a) Suppose q_{1}, q_{2} are periods of f, and let $q=\operatorname{gcd}\left(q_{1}, q_{2}\right)$. Show that q is a period as well (hint: given a, b prime to N such that $a \equiv b(q)$ show that there are $x, y \in \mathbb{Z}$ such that $b-a=x q_{1}+y q_{2}$ with $a+x q_{1}$ prime to $\left.N\right)$.
(b) Show that there is a unique $q=q(f)$ and a unique $g: \mathbb{Z} \rightarrow \mathbb{C}$ which is q-periodic, supported on integers prime to q and primitive (the only period of g is q) such that $f(n)=g(n)$ for all n prime to N.
3. Fix $q>1$.
(a) Let χ be a non-principal Dirichlet character $\bmod q$. Show that $\sum_{p} \frac{\chi(p)}{p}$ converges.
(b) Let $(a, q)=1$. Show that $\sum_{p \equiv a(q), p \leq x} \frac{1}{p}=\frac{1}{\varphi(q)} \log \log x+O(1)$
(*) Improve the error term to $C+O\left(\frac{1}{\log x}\right)$.

Counting with characters

Fix an odd prime p.
4. (The quadratic character) Recall that the group $U=(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic of order $p-1$.
(a) Show that the map $x \rightarrow x^{2}$ is a group homomorphism $U \rightarrow U$ with kernel of size 2 , hence that the set S of squares $\bmod p$ has order $\frac{p-1}{2}$.
(b) Note that $U / S \simeq C_{2}$ and obtain the quadratic character (Legendre symbol), a group homomorphism $(\dot{\bar{p}}): U \rightarrow\{ \pm 1\}$ such that $\left(\frac{a}{p}\right)=1$ iff $x^{2}=a$ is solvable in U.
(c) Write $\chi(a)$ for this character, and extend it to $\mathbb{Z} / p \mathbb{Z}$ by setting $\chi(0)=0$. Show that $1+\chi(a)$ is the number of solutions to $x^{2}=a$ in $\mathbb{Z} / p \mathbb{Z}$.
(d) Consider the equation $x^{2}+y^{2}=c$ in $\mathbb{Z} / p \mathbb{Z}(c \neq 0)$. Show that its number of solutions is $\sum_{a+b=c}(1+\chi(a))(1+\chi(b))$. Use the identity $\chi(a) \chi(b)=\chi\left(\frac{a}{c-a}\right)$ (if $\left.a \neq c\right)$ to show that $\sum_{a+b=c} \chi(a) \chi(b)=-\chi(-1)$ and hence that the equation has $p-\chi(-1)$ solutions.
5. (A linearly uniform but quadratically non-uniform set) Fix a smooth cutoff function $\varphi: \mathbb{R} / \mathbb{Z} \rightarrow$ $[0,1]$ supported on $[-\varepsilon-\delta, \varepsilon+\delta]$ and identically equal to 1 on $[-\varepsilon, \varepsilon]$. For each prime p define $F(x)=\varphi\left(\frac{x^{2}}{p}\right)$ (this roughly locates those x such that x^{2} has a representative within εp of zero).
(a) Show that $\left|\frac{1}{p} \sum_{x(p)} F(x)-\varepsilon\right| \leq \delta+O\left(\frac{1}{\sqrt{p}}\right)$ and that for $k \not \equiv 0(p), \frac{1}{p} \sum_{x(p)} F(x) e_{p}(-k x)=$ $O_{\varphi}\left(\frac{1}{\sqrt{p}}\right)$.
(b) Let $A_{\mathcal{E}} \subset \mathbb{Z} / p \mathbb{Z}$ be the set of x such that x^{2} has a representative within εp of zero. Show that $A_{\boldsymbol{\varepsilon}}$ has density $\boldsymbol{\varepsilon}+\boldsymbol{O}(\boldsymbol{\delta})$ and has $\varepsilon^{3} p^{2}+O(\boldsymbol{\delta}) p^{2}+O_{\delta, \varepsilon}\left(p^{3 / 2}\right) 3$-APs.
(c) Establish the identity $x^{2}-3(x+d)^{2}+3(x+2 d)^{2}-(x+3 d)^{2}=0$ and conclude that if $x, x+d, x+2 d \in A_{\varepsilon / 7}$ then $x+3 d \in A_{\varepsilon}$ and hence that the number of 3APs in A_{ε} is \geq $C \varepsilon^{3} p^{2}$.
RMK If the count of 4APs was controlled by Fourier coefficients, we'd exepct $\varepsilon^{4} p^{2} 4 \mathrm{APs}$, and as $\varepsilon \rightarrow 0$ this is a very different number.

Fourier analysis on the circle

6. (Basics of Fourier series)
(a) Let $D_{N}(x)=\sum_{|k| \leq N} e(k x)$ be the Dirichlet kernel. Show that $\int_{0}^{1}\left|D_{N}(x)\right| \mathrm{d} x \gg \log N$.
(b) Let $F_{N}(x)=\sum_{|k|<N}\left(1-\frac{|k|}{N}\right) e(k x)$ be the Fejér kernel. Show that for $\delta \leq|x| \leq \frac{1}{2}$, we have $\left|F_{N}(x)\right| \leq \frac{1}{N \sin ^{2}(\pi \delta)}$ so that for $f \in L^{1}(\mathbb{R} / \mathbb{Z})$,

$$
\lim _{N \rightarrow \infty} \int_{\delta \leq|x| \leq \frac{1}{2}}|f(x)|\left|F_{N}(x)\right| \mathrm{d} x=0
$$

(c) In class we showed that "smoothness implies decay": if $f \in C^{r}(\mathbb{R} / \mathbb{Z})$ then for $k \neq 0$, $|\hat{f}(k)|<_{r}\|f\|_{C^{r}}|k|^{-r}$. Show the following partial converse: if $|\hat{f}(k)|=O\left(k^{-r-\varepsilon}\right)$ then $\sum_{k \in \mathbb{Z}} \hat{f}(k) e(k x) \in C^{r-1}(\mathbb{R} / \mathbb{Z})$.
7. (The Basel problem) Let $f(x)$ be the \mathbb{Z}-periodic function on \mathbb{R} such that $f(x)=x^{2}$ for $|x| \leq \frac{1}{2}$.
(a) Find $\hat{f}(k)$ for $k \in \mathbb{Z}$.
(b) Show that $\zeta(2)=\frac{\pi^{2}}{6}$.
(c) Apply Parseval's identity $\|f\|_{L^{2}(\mathbb{R} / \mathbb{Z})}=\|\hat{f}\|_{L^{2}(\mathbb{Z})}$ to evaluate $\zeta(4)$.
8. Let $\varphi \in \mathcal{S}(\mathbb{R})$.
(a) Let $c \in L^{2}(\mathbb{Z} / q \mathbb{Z})$. Show that $\sum_{n \in \mathbb{Z}} c(n) \varphi(n)=\sum_{k \in \mathbb{Z}} \hat{c}(-k) \hat{\varphi}(k / q)$.
(b) Let χ be a primitive Dirichlet character $\bmod q$. Show that

$$
\sum_{n \in \mathbb{Z}} \chi(n) \varphi(n)=\frac{G(\chi)}{q} \sum_{k \in \mathbb{Z}} \bar{\chi}(k) \hat{\varphi}\left(\frac{k}{q}\right) .
$$

9. Combine the Vinogradov trick and the Burgress bound.

Application: Weyl differencing and equidistribution on the circle

10. (Equidistribution) Let X be a compact space, μ a fixed probability measure on X (thought of as the "uniform" measure). We say that a sequence of probability measures $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is equidistributed if it converges to μ in the weak-* sense, that is if for every $f \in C(X)$, $\lim _{n \rightarrow \infty} \mu_{n}(f)=\mu(f)$ (equivalently, if for every open set $U \subset X, \mu_{n}(U) \rightarrow \mu(U)$).
(a) Show that it is enough to check convergence on a set $B \subset C(X)$ such that $\operatorname{Span}_{\mathbb{C}}(B)$ is dense in $C(X)$.
(b) (Weyl criterion) We will concentrate on the case $X=\mathbb{R} / \mathbb{Z}, \mu=$ Lebesgue. Show that in that case it is enough to check whether $\int_{0}^{1} e(k x) \mathrm{d} \mu_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} 0$ for each non-zero $k \in \mathbb{Z}$. (Hint: Stone-Weierstrass)
DEF We say that a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ is equidistributed (w.r.t. μ) if the sequence $\left\{\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}}\right\}_{k=1}^{\infty}$ is equidistributed, that is if for every open set U the proportion of $1 \leq k \leq n$ such that $x_{k} \in U$ converges to $\mu(U)$, the proportion of the mass of X carried by μ.
(c) Let α be irrational. Show directly that the sequence fractional parts $\{n \alpha \bmod 1\}_{n=1}^{\infty}$ is dense in $[0,1]$.
(d) Let α be irrational. Show that the sequence of fractional parts $\{n \alpha \bmod 1\}_{n=1}^{\infty}$ is equidistributed in $[0,1]$.
(e) Returning to the setting of parts (a),(b). suppose that $\operatorname{supp}(\mu)=X$. Show that every equidistributed sequence is dense.
