
Math 539: Problem Set 0 (due 18/1/2016)

Policy for Problem Sets: adopt a reasonable workload for your situation; you should do some
non-trivial problems in any case.

In this problem set: We will repeatedly rely on this results of this problem set; there is no
number theory here yet. If you only do some of the problems, I recommend starting with 1,3 and
parts of of 5 and 6. Problem 7 is intended to review ideas from Math 437/537.

Real analysis

1. (Asymtotic notation) Let f ,g be defined for x large enough. We write f � g and f = O(g) if
there is C > 0 such that | f (x)| ≤Cg(x) for all large enough x.
(a) Let f ,g be functions such that f (x),g(x)> 2 for x large enough. Show that f � g implies

log f � logg. Give a counterexample under the weaker hypothesis f (x),g(x)> 1.
(b) For all A > 0, 0 < b < 1 and ε > 0 show that for x≥ 1,

logA x� exp
(

logb x
)
� xε .

2. Set log1 x = logx and for x large enough, logk+1 x = log(logk x). Fix ε > 0.
(PRAC) Find the interval of definition of logk x. For the rest of the problem we suppose that

logk x is defined at N.
(a) Show that ∑

∞
n=N

1
n logn log2 n··· logk−1 n(logk n)1+ε converges.

(b) Show that ∑
∞
n=N

1
n logn log2 n··· logk−1 n(logk n)1−ε diverges.

3. (Stirling’s formula)
(a) Show that

∫ k+1/2
k−1/2 log t dt− logk = O( 1

k2 ).
(b) Show that there is a constant C such that

log(n!) =
n

∑
k=1

logk =
(

n+
1
2

)
logn−n+C+O

(
1
n

)
.

RMK C = 1
2 log(2π) (see problem 6(f) below) but this is rarely relevant.

4. Let {an}∞

n=1 ,{bn}∞

n=1 ⊂ C be sequences with partial sums An = ∑
n
k=1 ak, Bn = ∑

n
k=1 bk.

(a) (Abel summation formula) ∑
N
n=1 anbn = ANbN−∑

N−1
n=1 An(bn+1−bn)

– (Summation by parts formula) Show that ∑
N
n=1 anBn = ANBN−∑

N−1
n=1 Anbn+1.

(b) (Dirichlet’s test) Suppose that {An}∞

n=1 are uniformly bounded and that bn ∈R>0 decrease
monotonically to zero. Show that ∑

∞
n=1 anbn converges.

(c) Let χ3(n) =

{
±1 n≡±1(3)
0 3|n

. Show that Dirichlet’s L-series L(s; χ3) = ∑
∞
n=1 χ3(n)n−s

coverges for s real and positive.
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Complex analysis: the Gamma function

DEFINITION. The Mellin transform of a function φ on (0,∞) is given byMφ(s)=
∫

∞

0 φ(x)xs dx
x

whenever the integral converges absolutely.

5. Let φ be a bounded function on (0,∞) [measurable so the integrals make sense]
(a) Suppose that for some α > 0 we have φ(x) = O(x−α) as x→ ∞ (see problem 1 for this

notation). Show that theMφ defines a holomorphic function in the strip 0 < ℜ(s)< α .
For the rest of the problem assume that φ(x) = O(x−α) holds for all α > 0.

(b) Suppose that φ is smooth in some interval [0,b] (that is, there b > 0 and is a function
ψ ∈ C∞ ([0,b]) such that ψ(x) = φ(x) with 0 < x ≤ b). Show that φ̃(s) extends to a
meromorphic function in ℜ(s)< α , with at most simple poles at −m, m ∈ Z≥0 where the

residues are φ (m)(0)
m! (in particular, if this derivative vanishes there is no pole).

(c) Extend the result of (b) to φ such that φ(x)−∑
r
i=1

ai
xi is smooth in an interval [0,b].

(d) Let Γ(s) =
∫

∞

0 e−tts dt
t . Show that Γ(s) extends to a meromorphic function in C with simple

poles at Z≤0 where the residue at −m is (−1)m

m! .

6. (The Gamma function) Let Γ(s) =
∫

∞

0 e−tts dt
t , defined initially for ℜ(s)> 0. See supplemen-

tary problem B for a proof that this extends to a meromorphic function in C and a determination
of the location and residues at the poles (all poles are simple).
FACT A standard integration by parts shows that sΓ(s) = Γ(s+1) and hence Γ(n) = (n−1)!

for n ∈ Z≥1.
(a) Let QN(s)=

∫ N
0
(
1− x

N

)N xs dx
x . Show that QN(s)= N!

s(s+1)···(s+N)N
s. Show that 0≤

(
1− x

N

)N ≤
e−x holds for 0≤ x ≤ N, and conclude that limN→∞

N!
s(s+1)···(s+N)N

s = Γ(s) for on ℜs > 0

(for a quantitative argument show instead 0≤ e−x−
(
1− x

N

)N ≤ x2

N e−x)
(b) Define f (s) = seγs

∏
∞
n=1
(
1+ s

n

)
e−s/n where γ = limn→∞

(
∑

n
i=1

1
i − logn

)
is Euler’s con-

stant. Show that the product converges locally uniformly absolutely and hence defines an
entire function in the complex plane, with zeros at Z≤0 . Show that f (s+1) = 1

s f (s).
(c) Let PN(s) = seγs

∏
N
n=1
(
1+ s

n

)
e−s/n. Show that for α ∈ (0,∞),limN→∞ QN(α)PN(α) = 1

and conclude (without using problem 5!) that Γ(s) extends to a meromorphic function in
C with simple poles at Z≤0, that Γ(s) 6= 0 for all s ∈C\Z≤0 and that it has the Weierstraß
product representation

Γ(s) =
e−γs

s

∞

∏
n=1

(
1+

s
n

)−1
es/n .

(d) Let z(s)= Γ′(s)
Γ(s) be the Digamma function. Using the Euler–Maclaurin summation formula

∑
n=N
n=0 f (n)=

∫ N
0 f (x)dx+ 1

2 ( f (0)+ f (N))+ 1
12 ( f ′(0)− f ′(N))+R, with |R| ≤ 1

12
∫ N

0 | f ′′(x)|dx,
show that if −π +δ ≤ arg(s)≤ π +δ and s is non-zero then

z(s) = logs− 1
2s

+Oδ

(
|s|−2

)
.
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Integrating on an appropriate contour, obtain Stirling’s Approximation: there is a constant
c such that if arg(s) is as above then

logΓ(s) =
(

s− 1
2

)
logs− s+ c+Oδ

(
1
|s|

)
.

RMK Compare with the result of 3(b)
(e) Show Euler’s reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
.

Conclude that Γ
(1

2

)
=
√

π and hence that
∫+∞

−∞
e−αx2

dx =
√

π

α
.

(f) Setting s = 1
2 + it in the reflection formula and letting t → ∞, show that c = 1

2 log(2π) in
Stirling’s Approximation.

(g) Show Legendre’s duplication formula

Γ(
s
2
)Γ(

s+1
2

) =
√

π21−s
Γ(s) .

Review of arithmetic functions

REMARK We won’t do any serious abstract algebra in this course, but I will use basic terminology
like “commutative ring”. For definitions Wikipedia is your friend.

7. Most of the stuff below should be familiar from Math 437/537
DEF (Dirichlet convolution) ( f ∗g)(n) = ∑ab=n f (a)g(b).
(a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a

commutative ring. The identity element is the function δ (n) =

{
1 n = 1
0 n > 1

.

(b) f is invertible in this ring iff f (1) is invertible in C.
(c) If f ,g are multiplicative so is f ∗g.
DEF I(n) = 1, N(n) = n, φ(n) =

∣∣(Z/nZ)×
∣∣, µ(n) = (−1)r if n is a product of r ≥ 0 distinct

primes, µ(n) = 0 otherwise (i.e. if n is divisible by some p2).
(d) (“Möbius inversion”) Show that I ∗µ = δ by explicitly evaluating the convolution at n =

pm and using (c).
(e) Show that φ ∗ I = N: (i) by explcitly evaluating the convolution at n = pm and using (c);

(ii) by a combinatorial argument.
DEF A derivation in the ring R is a function D : R→ R such that for all f ,g ∈ R one has

D( f g) = D f ·g+ f ·Dg (example: D = d
dx acting on smooth functions).

(f) Show that pointwise multiplication by an arithmetic function L(n) is a derivation in the
ring of arithmetic functions iff L(n) is completely additive: L(de) = L(d) + (e) for all
d,e≥ 1. In particular, this applies to L(n) = logn.
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Supplement: Formal Dirichlet Series

Supplementary problems are not for submission.

DEFINITION. The ring of Dirichlet polynomials (let’s denote it Df) consists of all formal ex-
pressions of the form D(s) = ∑n≤x ann−s where an ∈C (modulu the obvious equivalence relation).
Call a1 the constant coefficient. Multiplication is the bilinear map induced from n−s×m−s =
(nm)−s.

A. (Basics)
(a) Show that this is a ring, and that the map D(s) 7→ a1 is a ring homomorphism Q : Df→C.

Write m for its kernel, the maximal ideal.
(b) Conversely, show that every homomorphism Df→ C is of the form σ ◦Q for some q ∈

Aut(C).
(b) Let v : D : [0,∞] be given by v(∑n ann−s)=N if aN 6= 0 but an = 0 for n<N (set v(0)=∞).

Show that v(D1+D2)≥min{v(D1),v(D2)} and conclude that d(D1,D2)= exp{−v(D1−D2)}
is a metric on Df (in fact, an ultrametric).

(c) Show that the ring D of Dirichlet series is exactly the completion of Df with respect to the
metric.

(d) Show that for any arithmetic function f , the series ∑n≥1 f (n)n−s (thought of as a sum of
the individual Dirichlet polynomials f (n)n−s) converges in D to formal series D f (s) =
∑n≥1 f (n)n−s.

(e) (calculus student’s dream) Show that (for Di ∈ cD) a series ∑i Di converges iff the terms
converge to zero (i.e. iff v(Di)→ ∞).

(f) Show that the product ∏i (1+Di) converges and diverges under the same hypothesis.
B. (exp and log)

(a) Let F(T ) ∈ TC[[T ]] be a formal power series with no constant coefficient, say F(T ) =
∑

∞
k=1 akT k, and let D ∈ m be a formal Dirichlet series with no constant coefficient. Show

that F(D)
def
= ∑

∞
k=1 akDk converges in our topology to an element of f rakm, so that F : m→

m is continous.
(b) Show that same for a two-variable power series with no constant coefficient, G(T,S) ∈

(T +S)C[[T,S]].
(c) Conclude that log(1+D), exp(D) exist for D ∈ m and satisfy log((1+D1)(1+D2)) =

log(1+D1)+ log(1+D2) and exp(D1 +D2) = exp(D1)exp(D2).
(d) Show that the construction above respects composition of formal power series with no

constant coefficient, and conclude that explogD = D and that logexpD = D.
(e) Extend exp to all of D using the topology of pointwise convergence of the coefficients.
(f) The formal derivative of D(s)=∑n≥1 f (n)n−s ∈D is the series D′(s)=∑n≥1 ( f (n) logn)n−s.

In 7(f) you obtained the Leibnitz identity (D1D2)
′ = D′1D2 +D1D′2. Show that (logD)′ =

D′
D and that (expD)′ = (expD)D′.

C. (Euler products)
(a) For each prime p let Dp be a formal Dirichlet series supported on the powers of p, with

constant coefficient 1. Show that ∏p Dp converges in cD. Series obtained this way are
said to have an Euler product.

(b) Show that every series has at most one representation as an Euler product, and that if
D1,D2 have an Euler product then so does D1D2.
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