Math 539: Problem Set 0 (due 18/1/2016)

Policy for Problem Sets: adopt a reasonable workload for your situation; you should do some non-trivial problems in any case.

In this problem set: We will repeatedly rely on this results of this problem set; there is no number theory here yet. If you only do some of the problems, I recommend starting with 1,3 and parts of of 5 and 6. Problem 7 is intended to review ideas from Math 437/537.

Real analysis

- 1. (Asymptotic notation) Let f, g be defined for x large enough. We write $f \ll g$ and f = O(g) if there is C > 0 such that $|f(x)| \le Cg(x)$ for all large enough x.
 - (a) Let f, g be functions such that f(x), g(x) > 2 for x large enough. Show that $f \ll g$ implies $\log f \ll \log g$. Give a counterexample under the weaker hypothesis f(x), g(x) > 1.
 - (b) For all A > 0, 0 < b < 1 and $\varepsilon > 0$ show that for x > 1,

$$\log^A x \ll \exp\left(\log^b x\right) \ll x^{\varepsilon}.$$

2. Set $\log_1 x = \log x$ and for x large enough, $\log_{k+1} x = \log(\log_k x)$. Fix $\varepsilon > 0$.

(PRAC) Find the interval of definition of $\log_k x$. For the rest of the problem we suppose that $\log_k x$ is defined at N.

- (a) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log_2 n \cdots \log_{k-1} n (\log_k n)^{1+\varepsilon}}$ converges. (b) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log_2 n \cdots \log_{k-1} n (\log_k n)^{1-\varepsilon}}$ diverges.
- 3. (Stirling's formula)
 - (a) Show that $\int_{k-1/2}^{k+1/2} \log t \, dt \log k = O(\frac{1}{k^2}).$
 - (b) Show that there is a constant C such that

$$\log(n!) = \sum_{k=1}^{n} \log k = \left(n + \frac{1}{2}\right) \log n - n + C + O\left(\frac{1}{n}\right).$$

RMK $C = \frac{1}{2} \log(2\pi)$ (see problem 6(f) below) but this is rarely relevant.

- 4. Let $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be sequences with partial sums $A_n = \sum_{k=1}^n a_k, B_n = \sum_{k=1}^n b_k$.

 - (a) (Abel summation formula) Σ^N_{n=1} a_nb_n = A_Nb_N − Σ^{N-1}_{n=1}A_n(b_{n+1} − b_n)
 (Summation by parts formula) Show that Σ^N_{n=1} a_nB_n = A_NB_N − Σ^{N-1}_{n=1}A_nb_{n+1}.
 (b) (Dirichlet's test) Suppose that {A_n}[∞]_{n=1} are uniformly bounded and that b_n ∈ ℝ_{>0} decrease monotonically to zero. Show that Σ[∞]_{n=1}a_nb_n converges.
 - (c) Let $\chi_3(n) = \begin{cases} \pm 1 & n \equiv \pm 1 \ (3) \\ 0 & 3|n \end{cases}$. Show that *Dirichlet's L-series* $L(s;\chi_3) = \sum_{n=1}^{\infty} \chi_3(n) n^{-s}$

coverges for s real and positive.

Complex analysis: the Gamma function

DEFINITION. The *Mellin transform* of a function ϕ on $(0,\infty)$ is given by $\mathcal{M}\phi(s) = \int_0^\infty \phi(x) x^s \frac{dx}{x}$ whenever the integral converges absolutely.

- 5. Let ϕ be a bounded function on $(0,\infty)$ [measurable so the integrals make sense]
 - (a) Suppose that for some $\alpha > 0$ we have $\phi(x) = O(x^{-\alpha})$ as $x \to \infty$ (see problem 1 for this notation). Show that the $\mathcal{M}\phi$ defines a holomorphic function in the strip $0 < \Re(s) < \alpha$. For the rest of the problem assume that $\phi(x) = O(x^{-\alpha})$ holds for all $\alpha > 0$.
 - (b) Suppose that φ is smooth in some interval [0,b] (that is, there b > 0 and is a function ψ ∈ C[∞]([0,b]) such that ψ(x) = φ(x) with 0 < x ≤ b). Show that φ̃(s) extends to a meromorphic function in ℜ(s) < α, with at most simple poles at -m, m ∈ Z_{≥0} where the residues are φ^(m)(0)/m! (in particular, if this derivative vanishes there is no pole).
 - (c) Extend the result of (b) to ϕ such that $\phi(x) \sum_{i=1}^{r} \frac{a_i}{x^i}$ is smooth in an interval [0, b].
 - (d) Let $\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}$. Show that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$ where the residue at -m is $\frac{(-1)^m}{m!}$.
- 6. (The Gamma function) Let $\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}$, defined initially for $\Re(s) > 0$. See supplementary problem B for a proof that this extends to a meromorphic function in \mathbb{C} and a determination of the location and residues at the poles (all poles are simple).
 - FACT A standard integration by parts shows that $s\Gamma(s) = \Gamma(s+1)$ and hence $\Gamma(n) = (n-1)!$ for $n \in \mathbb{Z}_{\geq 1}$.
 - (a) Let $Q_N(s) = \int_0^N (1 \frac{x}{N})^N x^s \frac{dx}{x}$. Show that $Q_N(s) = \frac{N!}{s(s+1)\cdots(s+N)} N^s$. Show that $0 \le (1 \frac{x}{N})^N \le e^{-x}$ holds for $0 \le x \le N$, and conclude that $\lim_{N \to \infty} \frac{N!}{s(s+1)\cdots(s+N)} N^s = \Gamma(s)$ for on $\Re s > 0$ (for a quantitative argument show instead $0 \le e^{-x} (1 \frac{x}{N})^N \le \frac{x^2}{N} e^{-x}$)
 - (b) Define $f(s) = se^{\gamma s} \prod_{n=1}^{\infty} (1 + \frac{s}{n}) e^{-s/n}$ where $\gamma = \lim_{n \to \infty} (\sum_{i=1}^{n} \frac{1}{i} \log n)$ is Euler's constant. Show that the product converges locally uniformly absolutely and hence defines an entire function in the complex plane, with zeros at $\mathbb{Z}_{\leq 0}$. Show that $f(s+1) = \frac{1}{s}f(s)$.
 - (c) Let $P_N(s) = se^{\gamma s} \prod_{n=1}^N \left(1 + \frac{s}{n}\right) e^{-s/n}$. Show that for $\alpha \in (0, \infty)$, $\lim_{N \to \infty} Q_N(\alpha) P_N(\alpha) = 1$ and conclude (without using problem 5!) that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$, that $\Gamma(s) \neq 0$ for all $s \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ and that it has the Weierstraß product representation

$$\Gamma(s) = \frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right)^{-1} e^{s/n}$$

(d) Let $F(s) = \frac{\Gamma'(s)}{\Gamma(s)}$ be the Digamma function. Using the Euler–Maclaurin summation formula $\sum_{n=0}^{n=N} f(n) = \int_0^N f(x) \, dx + \frac{1}{2} \left(f(0) + f(N) \right) + \frac{1}{12} \left(f'(0) - f'(N) \right) + R$, with $|R| \le \frac{1}{12} \int_0^N |f''(x)| \, dx$, show that if $-\pi + \delta \le \arg(s) \le \pi + \delta$ and *s* is non-zero then

$$F(s) = \log s - \frac{1}{2s} + O_{\delta}\left(|s|^{-2}\right).$$

Integrating on an appropriate contour, obtain *Stirling's Approximation*: there is a constant c such that if $\arg(s)$ is as above then

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + c + O_{\delta}\left(\frac{1}{|s|}\right).$$

- RMK Compare with the result of 3(b)
- (e) Show Euler's reflection formula

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}.$$

Conclude that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and hence that $\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$.

- (f) Setting $s = \frac{1}{2} + it$ in the reflection formula and letting $t \to \infty$, show that $c = \frac{1}{2}\log(2\pi)$ in Stirling's Approximation.
- (g) Show Legendre's duplication formula

$$\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2}) = \sqrt{\pi}2^{1-s}\Gamma(s).$$

Review of arithmetic functions

- REMARK We won't do any serious abstract algebra in this course, but I will use basic terminology like "commutative ring". For definitions Wikipedia is your friend.
- 7. Most of the stuff below should be familiar from Math 437/537 DEF (Dirichlet convolution) $(f * g)(n) = \sum_{ab=n} f(a)g(b)$.
 - (a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a commutative ring. The identity element is the function $\delta(n) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$.
 - (b) f is invertible in this ring iff f(1) is invertible in \mathbb{C} .
 - (c) If f, g are multiplicative so is f * g.
 - DEF I(n) = 1, N(n) = n, $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$, $\mu(n) = (-1)^r$ if *n* is a product of $r \ge 0$ distinct primes, $\mu(n) = 0$ otherwise (i.e. if *n* is divisible by some p^2).
 - (d) ("Möbius inversion") Show that $I * \mu = \delta$ by explicitly evaluating the convolution at $n = p^m$ and using (c).
 - (e) Show that $\phi * I = N$: (i) by explcitly evaluating the convolution at $n = p^m$ and using (c); (ii) by a combinatorial argument.
 - DEF A *derivation* in the ring *R* is a function $D: R \to R$ such that for all $f, g \in R$ one has $D(fg) = Df \cdot g + f \cdot Dg$ (example: $D = \frac{d}{dx}$ acting on smooth functions).
 - (f) Show that pointwise multiplication by an arithmetic function L(n) is a derivation in the ring of arithmetic functions iff L(n) is completely additive: L(de) = L(d) + (e) for all $d, e \ge 1$. In particular, this applies to $L(n) = \log n$.

Supplement: Formal Dirichlet Series

Supplementary problems are not for submission.

DEFINITION. The *ring of Dirichlet polynomials* (let's denote it \mathcal{D}_{f}) consists of all formal expressions of the form $D(s) = \sum_{n \le x} a_n n^{-s}$ where $a_n \in \mathbb{C}$ (modulu the obvious equivalence relation). Call a_1 the *constant coefficient*. Multiplication is the bilinear map induced from $n^{-s} \times m^{-s} = (nm)^{-s}$.

- A. (Basics)
 - (a) Show that this is a ring, and that the map $D(s) \mapsto a_1$ is a ring homomorphism $Q: \mathcal{D}_f \to \mathbb{C}$. Write \mathfrak{m} for its kernel, the maximal ideal.
 - (b) Conversely, show that every homomorphism $\mathcal{D}_{\mathfrak{f}} \to \mathbb{C}$ is of the form $\sigma \circ Q$ for some $q \in \operatorname{Aut}(\mathbb{C})$.
 - (b) Let $v: \mathcal{D}: [0,\infty]$ be given by $v(\sum_n a_n n^{-s}) = N$ if $a_N \neq 0$ but $a_n = 0$ for n < N (set $v(0) = \infty$). Show that $v(D_1 + D_2) \ge \min \{v(D_1), v(D_2)\}$ and conclude that $d(D_1, D_2) = \exp \{-v(D_1 - D_2)\}$ is a metric on \mathcal{D}_f (in fact, an ultrametric).
 - (c) Show that the ring \mathcal{D} of Dirichlet series is exactly the completion of \mathcal{D}_f with respect to the metric.
 - (d) Show that for any arithmetic function f, the series $\sum_{n\geq 1} f(n)n^{-s}$ (thought of as a sum of the individual Dirichlet polynomials $f(n)n^{-s}$) converges in \mathcal{D} to formal series $D_f(s) = \sum_{n\geq 1} f(n)n^{-s}$.
 - (e) (calculus student's dream) Show that (for $D_i \in cD$) a series $\sum_i D_i$ converges iff the terms converge to zero (i.e. iff $v(D_i) \to \infty$).
 - (f) Show that the product $\prod_i (1+D_i)$ converges and diverges under the same hypothesis.

B. (exp and log)

- (a) Let $F(T) \in T\mathbb{C}[[T]]$ be a formal power series with no constant coefficient, say $F(T) = \sum_{k=1}^{\infty} a_k T^k$, and let $D \in \mathfrak{m}$ be a formal Dirichlet series with no constant coefficient. Show that $F(D) \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} a_k D^k$ converges in our topology to an element of *frakm*, so that $F \colon \mathfrak{m} \to \mathfrak{m}$ is continuous.
- (b) Show that same for a two-variable power series with no constant coefficient, $G(T,S) \in (T+S)\mathbb{C}[[T,S]]$.
- (c) Conclude that $\log(1+D)$, $\exp(D)$ exist for $D \in \mathfrak{m}$ and satisfy $\log((1+D_1)(1+D_2)) = \log(1+D_1) + \log(1+D_2)$ and $\exp(D_1+D_2) = \exp(D_1)\exp(D_2)$.
- (d) Show that the construction above respects composition of formal power series with no constant coefficient, and conclude that $\exp \log D = D$ and that $\log \exp D = D$.
- (e) Extend exp to all of \mathcal{D} using the topology of pointwise convergence of the coefficients.
- (f) The *formal derivative* of $D(s) = \sum_{n \ge 1} f(n)n^{-s} \in \mathcal{D}$ is the series $D'(s) = \sum_{n \ge 1} (f(n)\log n)n^{-s}$. In 7(f) you obtained the Leibnitz identity $(D_1D_2)' = D'_1D_2 + D_1D'_2$. Show that $(\log D)' = \frac{D'}{D}$ and that $(\exp D)' = (\exp D)D'$.
- C. (Euler products)
 - (a) For each prime p let D_p be a formal Dirichlet series supported on the powers of p, with constant coefficient 1. Show that $\prod_p D_p$ converges in cD. Series obtained this way are said to have an *Euler product*.
 - (b) Show that every series has at most one representation as an Euler product, and that if D_1, D_2 have an Euler product then so does D_1D_2 .