Math 539: Problem Set 0 (due 18/1/2016)

Policy for Problem Sets: adopt a reasonable workload for your situation; you should do some non-trivial problems in any case.

In this problem set: We will repeatedly rely on this results of this problem set; there is no number theory here yet. If you only do some of the problems, I recommend starting with 1,3 and parts of of 5 and 6 . Problem 7 is intended to review ideas from Math 437/537.

Real analysis

1. (Asymtotic notation) Let f, g be defined for x large enough. We write $f \ll g$ and $f=O(g)$ if there is $C>0$ such that $|f(x)| \leq C g(x)$ for all large enough x.
(a) Let f, g be functions such that $f(x), g(x)>2$ for x large enough. Show that $f \ll g$ implies $\log f \ll \log g$. Give a counterexample under the weaker hypothesis $f(x), g(x)>1$.
(b) For all $A>0,0<b<1$ and $\varepsilon>0$ show that for $x \geq 1$,

$$
\log ^{A} x \ll \exp \left(\log ^{b} x\right) \ll x^{\varepsilon}
$$

2. Set $\log _{1} x=\log x$ and for x large enough, $\log _{k+1} x=\log \left(\log _{k} x\right)$. Fix $\varepsilon>0$.
(PRAC) Find the interval of definition of $\log _{k} x$. For the rest of the problem we suppose that $\log _{k} x$ is defined at N.
(a) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log _{2} n \cdots \log _{k-1} n\left(\log _{k} n\right)^{1+\varepsilon}}$ converges.
(b) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log _{2} n \cdots \log _{k-1} n\left(\log _{k} n\right)^{1-\varepsilon}}$ diverges.
3. (Stirling's formula)
(a) Show that $\int_{k-1 / 2}^{k+1 / 2} \log t \mathrm{~d} t-\log k=O\left(\frac{1}{k^{2}}\right)$.
(b) Show that there is a constant C such that

$$
\log (n!)=\sum_{k=1}^{n} \log k=\left(n+\frac{1}{2}\right) \log n-n+C+O\left(\frac{1}{n}\right)
$$

RMK $C=\frac{1}{2} \log (2 \pi)$ (see problem $6(\mathrm{f})$ below) but this is rarely relevant.
4. Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ be sequences with partial sums $A_{n}=\sum_{k=1}^{n} a_{k}, B_{n}=\sum_{k=1}^{n} b_{k}$.
(a) (Abel summation formula) $\sum_{n=1}^{N} a_{n} b_{n}=A_{N} b_{N}-\sum_{n=1}^{N-1} A_{n}\left(b_{n+1}-b_{n}\right)$

- (Summation by parts formula) Show that $\sum_{n=1}^{N} a_{n} B_{n}=A_{N} B_{N}-\sum_{n=1}^{N-1} A_{n} b_{n+1}$.
(b) (Dirichlet's test) Suppose that $\left\{A_{n}\right\}_{n=1}^{\infty}$ are uniformly bounded and that $b_{n} \in \mathbb{R}_{>0}$ decrease monotonically to zero. Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
(c) Let $\chi_{3}(n)=\left\{\begin{array}{ll} \pm 1 & n \equiv \pm 1(3) \\ 0 & 3 \mid n\end{array}\right.$. Show that Dirichlet's L-series $L\left(s ; \chi_{3}\right)=\sum_{n=1}^{\infty} \chi_{3}(n) n^{-s}$ coverges for s real and positive.

Complex analysis: the Gamma function

DEFINITION. The Mellin transform of a function ϕ on ($0, \infty$) is given by $\mathcal{M} \phi(s)=\int_{0}^{\infty} \phi(x) x^{s} \frac{\mathrm{~d} x}{x}$ whenever the integral converges absolutely.
5. Let ϕ be a bounded function on $(0, \infty)$ [measurable so the integrals make sense]
(a) Suppose that for some $\alpha>0$ we have $\phi(x)=O\left(x^{-\alpha}\right)$ as $x \rightarrow \infty$ (see problem 1 for this notation). Show that the $\mathcal{M} \phi$ defines a holomorphic function in the strip $0<\mathfrak{R}(s)<\alpha$. For the rest of the problem assume that $\phi(x)=O\left(x^{-\alpha}\right)$ holds for all $\alpha>0$.
(b) Suppose that ϕ is smooth in some interval $[0, b]$ (that is, there $b>0$ and is a function $\psi \in C^{\infty}([0, b])$ such that $\psi(x)=\phi(x)$ with $\left.0<x \leq b\right)$. Show that $\tilde{\phi}(s)$ extends to a meromorphic function in $\mathfrak{R}(s)<\alpha$, with at most simple poles at $-m, m \in \mathbb{Z}_{\geq 0}$ where the residues are $\frac{\phi^{(m)}(0)}{m!}$ (in particular, if this derivative vanishes there is no pole).
(c) Extend the result of (b) to ϕ such that $\phi(x)-\sum_{i=1}^{r} \frac{a_{i}}{x^{i}}$ is smooth in an interval $[0, b]$.
(d) Let $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{\mathrm{~d} t}{t}$. Show that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$ where the residue at $-m$ is $\frac{(-1)^{m}}{m!}$.
6. (The Gamma function) Let $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{\mathrm{~d} t}{t}$, defined initially for $\mathfrak{R}(s)>0$. See supplementary problem B for a proof that this extends to a meromorphic function in \mathbb{C} and a determination of the location and residues at the poles (all poles are simple).
FACT A standard integration by parts shows that $s \Gamma(s)=\Gamma(s+1)$ and hence $\Gamma(n)=(n-1)$! for $n \in \mathbb{Z}_{\geq 1}$.
(a) Let $Q_{N}(s)=\int_{0}^{N}\left(1-\frac{x}{N}\right)^{N} x^{s} \frac{\mathrm{~d} x}{x}$. Show that $Q_{N}(s)=\frac{N!}{s(s+1) \cdots(s+N)} N^{s}$. Show that $0 \leq\left(1-\frac{x}{N}\right)^{N} \leq$ e^{-x} holds for $0 \leq x \leq N$, and conclude that $\lim _{N \rightarrow \infty} \frac{N!}{s(s+1) \cdots(s+N)} N^{s}=\Gamma(s)$ for on $\Re s>0$ (for a quantitative argument show instead $0 \leq e^{-x}-\left(1-\frac{x}{N}\right)^{N} \leq \frac{x^{2}}{N} e^{-x}$)
(b) Define $f(s)=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}$ where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \frac{1}{i}-\log n\right)$ is Euler's constant. Show that the product converges locally uniformly absolutely and hence defines an entire function in the complex plane, with zeros at $\mathbb{Z}_{\leq 0}$. Show that $f(s+1)=\frac{1}{s} f(s)$.
(c) Let $P_{N}(s)=s e^{\gamma s} \prod_{n=1}^{N}\left(1+\frac{s}{n}\right) e^{-s / n}$. Show that for $\alpha \in(0, \infty), \lim _{N \rightarrow \infty} Q_{N}(\alpha) P_{N}(\alpha)=1$ and conclude (without using problem 5!) that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$, that $\Gamma(s) \neq 0$ for all $s \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ and that it has the Weierstraß product representation

$$
\Gamma(s)=\frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right)^{-1} e^{s / n}
$$

(d) Let $\digamma(s)=\frac{\Gamma^{\prime}(s)}{\Gamma(s)}$ be the Digamma function. Using the Euler-Maclaurin summation formula $\sum_{n=0}^{n=N} f(n)=\int_{0}^{N} f(x) \mathrm{d} x+\frac{1}{2}(f(0)+f(N))+\frac{1}{12}\left(f^{\prime}(0)-f^{\prime}(N)\right)+R$, with $|R| \leq \frac{1}{12} \int_{0}^{N}\left|f^{\prime \prime}(x)\right| \mathrm{d} x$, show that if $-\pi+\delta \leq \arg (s) \leq \pi+\delta$ and s is non-zero then

$$
\digamma(s)=\log s-\frac{1}{2 s}+O_{\delta}\left(|s|^{-2}\right)
$$

Integrating on an appropriate contour, obtain Stirling's Approximation: there is a constant c such that if $\arg (s)$ is as above then

$$
\log \Gamma(s)=\left(s-\frac{1}{2}\right) \log s-s+c+O_{\delta}\left(\frac{1}{|s|}\right)
$$

RMK Compare with the result of 3(b)
(e) Show Euler's reflection formula

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

Conclude that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and hence that $\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{\alpha}}$.
(f) Setting $s=\frac{1}{2}+$ it in the reflection formula and letting $t \rightarrow \infty$, show that $c=\frac{1}{2} \log (2 \pi)$ in Stirling's Approximation.
(g) Show Legendre's duplication formula

$$
\Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)=\sqrt{\pi} 2^{1-s} \Gamma(s) .
$$

Review of arithmetic functions

REMARK We won't do any serious abstract algebra in this course, but I will use basic terminology like "commutative ring". For definitions Wikipedia is your friend.
7. Most of the stuff below should be familiar from Math 437/537

DEF (Dirichlet convolution) $(f * g)(n)=\sum_{a b=n} f(a) g(b)$.
(a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a commutative ring. The identity element is the function $\delta(n)=\left\{\begin{array}{ll}1 & n=1 \\ 0 & n>1\end{array}\right.$.
(b) f is invertible in this ring iff $f(1)$ is invertible in \mathbb{C}.
(c) If f, g are multiplicative so is $f * g$.

DEF $I(n)=1, N(n)=n, \phi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|, \mu(n)=(-1)^{r}$ if n is a product of $r \geq 0$ distinct primes, $\mu(n)=0$ otherwise (i.e. if n is divisible by some p^{2}).
(d) ("Möbius inversion") Show that $I * \mu=\delta$ by explicitly evaluating the convolution at $n=$ p^{m} and using (c).
(e) Show that $\phi * I=N$: (i) by explcitly evaluating the convolution at $n=p^{m}$ and using (c); (ii) by a combinatorial argument.

DEF A derivation in the ring R is a function $D: R \rightarrow R$ such that for all $f, g \in R$ one has $D(f g)=D f \cdot g+f \cdot D g$ (example: $D=\frac{\mathrm{d}}{\mathrm{d} x}$ acting on smooth functions).
(f) Show that pointwise multiplication by an arithmetic function $L(n)$ is a derivation in the ring of arithmetic functions iff $L(n)$ is completely additive: $L(d e)=L(d)+(e)$ for all $d, e \geq 1$. In particular, this applies to $L(n)=\log n$.

Supplement: Formal Dirichlet Series

Supplementary problems are not for submission.
Definition. The ring of Dirichlet polynomials (let's denote it \mathcal{D}_{f}) consists of all formal expressions of the form $D(s)=\sum_{n \leq x} a_{n} n^{-s}$ where $a_{n} \in \mathbb{C}$ (modulu the obvious equivalence relation). Call a_{1} the constant coefficient. Multiplication is the bilinear map induced from $n^{-s} \times m^{-s}=$ $(n m)^{-s}$.
A. (Basics)
(a) Show that this is a ring, and that the map $D(s) \mapsto a_{1}$ is a ring homomorphism $Q: \mathcal{D}_{\mathrm{f}} \rightarrow \mathbb{C}$. Write \mathfrak{m} for its kernel, the maximal ideal.
(b) Conversely, show that every homomorphism $\mathcal{D}_{\mathfrak{f}} \rightarrow \mathbb{C}$ is of the form $\sigma \circ Q$ for some $q \in$ $\operatorname{Aut}(\mathbb{C})$.
(b) Let v : \mathcal{D} : $[0, \infty]$ be given by $v\left(\sum_{n} a_{n} n^{-s}\right)=N$ if $a_{N} \neq 0$ but $a_{n}=0$ for $n<N(\operatorname{set} v(0)=\infty)$. Show that $v\left(D_{1}+D_{2}\right) \geq \min \left\{v\left(D_{1}\right), v\left(D_{2}\right)\right\}$ and conclude that $d\left(D_{1}, D_{2}\right)=\exp \left\{-v\left(D_{1}-D_{2}\right)\right\}$ is a metric on \mathcal{D}_{f} (in fact, an ultrametric).
(c) Show that the ring \mathcal{D} of Dirichlet series is exactly the completion of \mathcal{D}_{f} with respect to the metric.
(d) Show that for any arithmetic function f, the series $\sum_{n \geq 1} f(n) n^{-s}$ (thought of as a sum of the individual Dirichlet polynomials $\left.f(n) n^{-s}\right)$ converges in \mathcal{D} to formal series $D_{f}(s)=$ $\sum_{n \geq 1} f(n) n^{-s}$.
(e) (calculus student's dream) Show that (for $D_{i} \in c D$) a series $\sum_{i} D_{i}$ converges iff the terms converge to zero (i.e. iff $\left.v\left(D_{i}\right) \rightarrow \infty\right)$.
(f) Show that the product $\prod_{i}\left(1+D_{i}\right)$ converges and diverges under the same hypothesis.
B. (exp and log)
(a) Let $F(T) \in T \mathbb{C}[[T]]$ be a formal power series with no constant coefficient, say $F(T)=$ $\sum_{k=1}^{\infty} a_{k} T^{k}$, and let $D \in \mathfrak{m}$ be a formal Dirichlet series with no constant coefficient. Show that $F(D) \stackrel{\text { def }}{=} \sum_{k=1}^{\infty} a_{k} D^{k}$ converges in our topology to an element of frakm, so that $F: \mathfrak{m} \rightarrow$ \mathfrak{m} is continous.
(b) Show that same for a two-variable power series with no constant coefficient, $G(T, S) \in$ $(T+S) \mathbb{C}[[T, S]]$.
(c) Conclude that $\log (1+D), \exp (D)$ exist for $D \in \mathfrak{m}$ and satisfy $\log \left(\left(1+D_{1}\right)\left(1+D_{2}\right)\right)=$ $\log \left(1+D_{1}\right)+\log \left(1+D_{2}\right)$ and $\exp \left(D_{1}+D_{2}\right)=\exp \left(D_{1}\right) \exp \left(D_{2}\right)$.
(d) Show that the construction above respects composition of formal power series with no constant coefficient, and conclude that exp $\log D=D$ and that $\log \exp D=D$.
(e) Extend \exp to all of \mathcal{D} using the topology of pointwise convergence of the coefficients.
(f) The formal derivative of $D(s)=\sum_{n \geq 1} f(n) n^{-s} \in \mathcal{D}$ is the series $D^{\prime}(s)=\sum_{n \geq 1}(f(n) \log n) n^{-s}$. In $7(\mathrm{f})$ you obtained the Leibnitz identity $\left(D_{1} D_{2}\right)^{\prime}=D_{1}^{\prime} D_{2}+D_{1} D_{2}^{\prime}$. Show that $(\log D)^{\prime}=$ $\frac{D^{\prime}}{D}$ and that $(\exp D)^{\prime}=(\exp D) D^{\prime}$.
C. (Euler products)
(a) For each prime p let D_{p} be a formal Dirichlet series supported on the powers of p, with constant coefficient 1 . Show that $\prod_{p} D_{p}$ converges in $c D$. Series obtained this way are said to have an Euler product.
(b) Show that every series has at most one representation as an Euler product, and that if D_{1}, D_{2} have an Euler product then so does $D_{1} D_{2}$.

