Math 539: Analytic Number Theory
Lecture Notes

Lior Silberman



ABSTRACT. These are rough notes for the Spring 2015 course. Problem sets and solutions were
posted on an internal website.
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Introduction (Lecture 1, 4/1/2016)

Lior Silberman, 1ior@ath.UBC.CA, http://www.math.ubc.ca/"lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

e Problem sets will be posted on the course website.
— To the extent I have time, solutions may be posted on Connect.
— I will do my best to mark regularly.
e Textbooks
— Davenport [S]]
— Montgomery—Vaughn [9]
— Iwaniec—Kowalski [8]]

0.2. Course plan (subject to revision)

e Elementary counting (“change the order of summation™)
e Exponential sums

e Counting primes, primes in arithmetic progressions

e Other topics if time permits.

0.3. Introduction

DEFINITION 1 (Caricature). Number Theory tries to find integer solutions to polynomial equa-
tions.

e Algebraic Number Theory: study individual solutions.
- Solve x* 4 y? = p, and x* 4+ y? = n using prime factorization in the Gaussian integers.
- Solve x* 4+ y* = 73 using prime factorization in the Eisenstein integers.
— Solve a” + bP = cP using the Frey curve y? = x(x — a”)(x — bP).

e Analytic Number Theory: count the solutions.
— (Gauss circle) What is the average number of ways to represent an integer at most x

as a sum of two squares?

— (Roth) Let A be a dense subset of [n]. Then A must have many solutions to x+z = 2y.
— Primes

* (Mertens) Zpﬁx% =loglogx+C+ 0(@).

+ (Gauss; Riemann+dvP/Hadamard) ¥, log p = x+ O (xexp { —/logx} ), hence
Lp<rl ~ g

* (Twin primes conj) Y., <y ,4 prime 1 ~ 2C2—

logzx
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— (Vinogradov 1937 [12]) Let n be large enough and odd. Then the equation p| + p; +

p3 = n has about lo’én solutions.

— (Green) Let A be a dense subset of the primes. Then A must have many solutions to
x+z=2y.

THEOREM 2 (Helfgott 2013). For all odd N > 10?3 there is x for which

)y fIA(ni)m (n;) >0,

ni+na+n3 =Ni=1

where 1; are appropriate (positive) smooth functions.

COROLLARY 3. (Adding numerics of Helfgott—Platt) Every odd integer N > 5 is the sum of
three primes.

THEOREM 4 (Zhang 2013 [13]]). There is a weight function v(n) > 0, a finite set H of positive
integers such that for all large enough x

Z 6 (n+h)—log3x | v(n) >0,
x<n<2x heH
n=b(W(x))

logn n prime
where 0(n) = g P ., W(x) is some slowly growing function of x and b is chosen
0 otherwise
appropriately.
COROLLARY 5. For every x large enough there is x < n < 2x and distinct hy,hy € H such that
n+ hy,n+ hy are prime. In particular, there are arbitrarily large pairs of prime numbers whose

difference is at most max H — min H.

REMARK 6. Zhang obtained the bound 7 - 107 for the gap max# — min#. Further work by
Polymath8, Motohashi—Pintz and Maynard has reduced the gap to 246.



CHAPTER 1

Elementary counting

1.1. Basic tools
1.1.1. Stirling’s formula (PS0).
1.1.2. Abel Summation (PS0).
1.1.3. Arithmetic functions (PS0) (Lecture 2; 8/6/2016).
DEFINITION 7. An arithmetic function is a function f: Z~qo — C.
1 n=1
0 n>1

sum-of-divisors function ¢ (n) = Zd|nd The Euler totient ¢(n) = #(Z/nZ)*. For n =I]_, p’
set (n) =r, Q(n) =Y e (so w is additive, Q completely additive), Mobius function L(n) =
{(—1)‘”(”) n squarefree

EXAMPLE 8. 6(n) = { , I(n) = 1; N(n) = n. The divisor function t(n) =} 4|, 1 and

, Liouville function A (n) = (—1)%".
0 n squarefull

DEFINITION 9. The Dirichlet convolution (Or multiplicative convolution) of f, g is the function

(fxg)(n)="Y f(d)

de=n

EXAMPLE 10. t=1IxI, 6 =I«N,Ixu=0,I+¢ =N.

LEMMA 11. The set of arithmetic functions with pointwise addition and Dirichlet convolution
forms a commutative ring with identity 6. f is invertible iff f(1) is invertible in C (note f — f(1)
is ring hom to C).

COROLLARY 12 (Mobius inversion formula). If F = G*1 then G = F x L.

The Chinese Remainder Theorem says: if (m,n) = 1 then (Z/mZ) x (Z/nZ) ~ (Z/nmZ) as
rings. This forces some relations. For example, ¢ (nm) = ¢ (n)@(m), t(nm) = t(n)t(m), o(nm) =
o(n)o(m).

DEFINITION 13. Call f multiplicative if f(nm) = f(n)f(m) if (n,m) = 1, completely multi-
plicative if f(nm) = f(n)f(m) for all n,m.

LEMMA 14. If f,g are multiplicative so is f x g. If f(1) # O then f is multiplicative iff f ' is

EXAMPLE 15. I,N hence 7,0, U, A .

Multiplicative f are determined by values at prime powers.

e To an arithmetic function associate the (formal) Dirichlet series Ds(s) =Y, f(n)n™*
e Multiplication given by Dirichlet convolution — isomorphism of rings.
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EXAMPLE 16. C(S) =Y, n = Hp (1 _p_s)il' Then C(S)_l = Hp(l _p—s) = Znnu(n)n_s,
new proof of Mdbius inversion.

THEOREM 17 (Folklore). There are infinitely many primes.

EULER’S PROOF. Euler product converges for R(s) > 1, locally uniformly, so actually get
identity of functions. By MCT lim,_,;+ {(s) = ¥°°_; 1 = o so infinitely many primes. O

n=1n

EXAMPLE 18. Formal differentiation gives —(’(s) = Y~ L(n)n~* with L(n) = logn. Mul-
tiplication by L (or any additive function) is a derivation in the ring. Formally differentiating the

Euler product also gives
C (S) — Z A(n)n—s

&) =

where
k

1 —
Aln) = ogp n=p ‘
0 otherwise

is the von Mangoldt function. Note the identity above: {(s)Y,>1 A(n)n~* = —{'(s), that is
IxA=L.

1.2. Averages of arithmetic functions (Lecture 3, 8/1/2016)

e Goal: how big f(n) is “on average”.

1.2.1. Idea: convolutions are smoothing. Suppose f = g*h. Then

Y fm) = ¥ Yen3)

n<x n§xd|n
= Y g(d) Y h(m).
d<x m<5

Now if 4 is “smooth” then Zmé% h(m) may be nice enough to evaluate.

EXAMPLE 19 (Elementary calculations). (1) The divisor function

Yt = ) Y1

n<x d<xm<5

= L= (Grom)

d<x d<x

= xZé-l—O(x)

d<x

= xlogx+O(x).
Thus



(2) The totient function.

Yom = LYu@i=Yu@ Y =
n<x n<xd|n d<x dn<x
x? x
= Lu) T n= L uid (52 +00)
d 1
= xzz%—i—O(xZE)
d<x d<x
= x° (5_1(2) - 0()—16)> + O(xlogx)
2
= 0] + O(xlogx).

Thus

1 X
;réqb(n) = {0 + O(logx).

(3) The normalized totient function
1.2.2. The Gauss Circle Problem.

DEFINITION 20. Let ry(n) = #{a € Z¥ | YE a2 = n} be the numebr of representations of n
as a sum of k squares.

Then ¥, (1) = # (Z* N B«(1/x)). Now tile the plane with units cubes centered at the lattice
points of Z* and let d be the diameter of the unit cube. Then

B (Vi) e (g+ L] ) C B (V+a).
a€ZFNBpy (V/x)
Now let % be the volume of the unit ball in k dimensions. Then vol (Bgi(v/x+O(1))) =
% (Va+0(1) = gt 0 (x'7).
COROLLARY 21 (Gauss). We have
" (Zk mBRk(\/})> =yt 40 <x%) .
Note that the error term has a natural interpretation as the volume of the sphere.

Consider first the case k = 2, where the size of the error term is known as the Gauss Circle
Problem.

THEOREM 22 (Hardy 1915). Write #(Z? N Bga(v/x)) = mx+ E(x). Then E(x) > x'/*log!/*x
infinitely often.

CONJECTURE 23 (Hardy). E(x) < x4 €,
We may later give Voronoi’s bound E (x) < xite (see section XX). The world record is

THEOREM 24 (Huxley 2003). E(x) <¢ x#16TE,
8



REMARK 25. This actually applies to counting in the dilates of a convex set whose boundary
has curvature bounded below.

When k > 4 the situation is easier, because r4(n) is a nicer function.

THEOREM 26 (Jacobi).

ra(n) =82+ (-1)") ¥ 4.

d|n
d odd
COROLLARY 27. Y, <, 74(n) = %zxz + O(xlogx).
PROOF. By the usual method
Y rain) = Y 82+(—1)")d
n<x n=md<x
d odd
= 8) 2+(-1)") ) d
m<x dg%
d odd
11 2
= 3sY 2+(- ( (%) +0(f))
s 22 \m m
) 1
= 27 Z +o(xY) —
m<x m<xm
1
= 2 (C(Z) + 5{(2)) + O(xlogx)
= 3¢(2)x* +O(xlogx)
2
= 7x2—|—0(xlogx).

Note that Gauss’s argument would have given the error term 0(x3/ 2).

EXERCISE 28. Improve for k > 5 the error term to O(x - 1) using the result for k = 4.

1.2.3. Dirichlet hyperbola method (‘‘divisor switching’’) (Lecture 4, 11/1/2016). The cal-
culatution above of the average of 7(n) is inefficient, since the estimate [¥] =2 4 O(1) is bad for
large d. We observe with Dirichlet, however, that every n < x has a divisor smaller than /x. Thus

Yem=2Y |3]-[VaI’

n<x d<\/x



(error coming from cases where both divisors are < x, including square n). Thus

Yin) =2V §—x+0(ﬁ)
n<x d<y/x

= 2 ) é—x+0(\/§)
d<y/x

= x <2log\/§c+ 2y+0 (%) — 1) +0(v/x)

= xlogx+ (2y—1)x+O(v/x).
We conlcude that
LY tn) = logxt 27— 1) + 012,
X n<x
EXERCISE 29. Prove by the hyperbola method that % Y <x T(n) = P(logx)+0 (xl’%) where
Py is a polynomial of degree k.

EXERCISE 30. Let k > 4. Writing r(n) = Y, 5,7 rs(n —yk 1xk) and changing the order
of summation, show that

k/2

B (mx)
L=

. k-1 :
Note that the same formula with error term O (xT> follows from a volume argument as in the

+0 (xg_l logx)

circle method.

1.3. Elementary prime estimates

1.3.1. Cramer’s model. Let A C [2,x] be chosen as follows: each 2 < n < x independently
declares itself “prime” with probability Then

logn*

E|A ~
A= n<xlogn /logt

DEFINITION 31. Li(x) = [3 (&

e .
CONJECTURE 32 (Gauss). 7w(x) = |PN[0,x]| ~Li(x) ~ @.
Similarly we find
(1.3.1) EY logn=) 1~x.
neA n<x
(13.2) EZ =y L Y oglogrt 0(1)
- n€A n<xn10gn 2 tlogt &8 .
1 X de X
13.3 EY A(n)A(n+2) ~ %/ b X
( : nZ<x ngjclogzn 2 log?r  log’x

10



While these look similar, for the true set of primes (1.3.2) is easy (we are about to prove it),
(1.3.1)) is hard (one of the highlights of the course) and (1.3.3)) is open:

CONJECTURE 33 (Hardy-Littlewood twin primes conjecture). ¥,,<, P(n)P(n+2) ~2C, [5 -4

2 log?¢
where C; =1], ?1()[:)22)

REMARK 34. Numerical estimates show our model to be somewhat off. The reason is that
primality is not independent. For example, if n is prime then n+ 1 is not. A better model is to fix a
small parameter z (say z ~ Cloglogx), take the primes up to z as known, and exclude from A any
n divisible by a small prime.

CONJECTURE 35 (Generalized Hardy—Littlewood). See Green—Tao.

1.3.2. Chebychev’s estimate.
e Idea: dyadic decomposition

Let n < p < 2n. Then p||(*") since p divides (2n)! once and n! not at all. Given x setn = |%].
Then

Z logp < Z log p+logx

5<p<x n<p<2n

IN

2

log < n) +logx <log(4") +logx
n

< xlog2+logx.

Setting 6(x) = ¥, log p we find

O(x) <6 <§> +xlog2+logx

SO
log, x log, x
0(x) < xlog2 Z E+ Z logx
j=0 j=0
< (2log2)x+log’x

= O(x).
e Idea: there are very few prime powers
Now set W(x) = ¥, A(n). Then y(x) = 0(x) +08(x"/2) +0(x'/3) +--- = O(x +x/2 +x1/3 +
) = O(x) as well.
REMARK 36. Can also get a lower bound 6 (x) > cx from this method, by noting that primes
21 < p < ndon’t divide (**) at all, and bounding the number of times primes \/z < p < 21 can

divide. Note that (Zn”) > % since it’s the largest of 27+ 1 summands.

1.3.3. Mertens’s formula (Lecture 4, continued). Note that

ZA(d) = Zlogp = Z elogp = log (H pe> = logn.

din plin peln pelln
11



Thus

Ylogn = Y YAd)=) Ald) ) 1

n<x n<xd|n d<x dn<x

= Y A (S+o0)

d<x

= x2¥+0(21\(d)> .

d<x d<x

Now Y <, A(d) = y(d) = O(x) and

X
Zlogn = /logtdt+0(logx)
1

n<x

= xlogx —x+ O(logx).
Dividing by x we thus find

Y % =logx+O(1).

d<x

Using the principle of “very few prime powers” it also follows that

1
Z 08P _ logx+0O(1).

p<x

We are now ready to prove

THEOREM 37 (Mertens). There is a constant C such that Zpﬁx% =loglogx+C + O(@).

12



PROOF. Let S, = ¥,<, “52. Then

1

Z - Z_(Sn_Sn—l)

1
P gt logn

1 1 1
= S — C+0(—
Z " (logn log(n+ 1)) et (logx)

n<x

logn 1 1 1
- LU, ) - C+0(—
)} ( log(n+ 1)) i (ngjclogn log(n+ 1)) e (logx)

n<x

log(n+1) —logn
= C+0(—
Z log(n+1) +C+O( )
1 1
~+0(— 1
log(n+1) logx

n<x

= X

n<x

*odr 1
= C+0O0(—
/2 tlogt e (logx)

1
= loglogx+C+ 0(@) :

n<x

nlogn

REMARK 38. Can express as a Riemann—Stieltjes integral and integrate by parts instead.

1.3.4. The number of prime divisors (Lecture 5, 13/1/2016).

,;xw(”) - ;F
= L) =L (Grom)
= XP;X%JFO(E(X))

1
= xloglogx+Cx—+ 0(@) .

Thus

1 1
- Z o(n) =loglogx+C+ 0(1—)
X = ogx

13



We now compute the standard deviation

— Z n) —loglogx)* = = Z —— Z o(n)loglogx + (loglogx)?

n<x n<x n<x

= Z Z 1 —2loglogx (loglogx+ O(1)) + (loglogx)*

P1>P2<xp1,p2‘n<x

_ l<2 H Py { X }_Z [%D ~ (loglogx)? + O (loglogx) .

Pl pi#p<a LPIP2] pS P

2
1 1
< -+ )Y -] - (loglogx)? + O(loglogx)
p<xP p<xP
logl
= loglogx+C+ O(@C) + (loglogx)2+2Clog10gx+C2—I—O( Oi;fx> — (loglo
= O(loglogx).

(Theorem of Turan—Kubilius).
COROLLARY 39 (Hardy—Ramanujan). Most n < x have about loglogn prime divisors.

PROOF. By the triangle inequality in ¢2,

1/2 1/2 1/2
<l Z (w(n) —10g10gn)2> < (1 Z (0(n) —loglogx)2> + (l Z (10g10gx—10g10gn)2> :
xngx xngx xngx

Now for n > \/x, logn > %logx and loglogn >loglogx—log?2. It follows that )_ICanx (loglogx —loglog n)2 <
2
O(1) + 1&logx)” _ (1) and, squaring, that

NG
- Z n) —loglogn)? = O(loglogx)
n<x
as well. Now if |@(n) —loglogn| > (loglogn)3’/2 O

THEOREM 40 (Erdés—Kac). Fix a,b. Then

w(n) —loglogx <b
Vloglogx

1 (2 .,
—— | e
x—00 270 Ja

1
—#{n§x|a§
X

14



CHAPTER 2

Fourier analysis

NOTATION 41. For z € C set e(z) = exp(27iz).

2.1. The Fourier transform on Z/NZ
2.1.1. Basics.

DEFINITION 42. For f: Z/NZ — C set Ecf(x) = % Xx moanf(x). Set en(x) =e (). Set
Vi (x) = en(kx). Note that N is implicit and that kx is well-defined mod N.

LEMMA 43. {Wi}cz/nz is a complete orthonormal system in L?*(Z/NZ) (wrt the probability
measure).

COROLLARY 44 (Fourier analysis mod N). Set f(k) = (y, f) = Exw_i(x) f(x). Then
<A1
(2) (Fourier mverszon) f( ) =Yk f(k) Wi (x).

(3) (Parseval formula) 3, .o |/ (¥ >|2 = zk } A< >\2
(4) (Expansion of 0 dzstrzbutlon ) 4 N Lk(N) = Ox,. Equivalently,

1
— k
Nk%v:)eN( = {0 x%y

DEFINITION 45. Let f, g € L?>(7/NZ) we define their convolution to be

)0 = ~ ¥ fla)s(b)

N a+b=x

= Eyf(y)e(x—y).

LEMMA 46. fxg(k) = f(k)g(k).

PROOF. E, (f*g) (x)e_x(x) =Exyf(Mgx =)W r(Wi(x—y) =Ei.f(y)g(2) v_r(y) ‘l/fk(é)-

2.1.2. Application: Roth’s Theorem (Lectures 6-8, 15,18,20/1/2016).

PROBLEM 47. Let A C Z/NZ be large enough. Must A contain a 3-AP, that is a solution to
xX+z= 2y?

Let 0 = 52 = ||A]|, be the density of A. Here’s an easy combinatorial argument.
LEMMA 48. Suppose & > 3. Then A contains ®(N?) 3-APs.

15



PROOF. For x € A consider the sets {d |x+d € A}, {d |x—d € A} (basically shifts of A).
Each has density o > % and hence their intersection has density> 2o — 1. It follows that x is the
middle element of @(N) 3-APs. O

We count 3-APs using a Fourier expansion instead. Set
Asfis forf3) = 33 ) Zf x—d)f(x)f(x+d),

so that A3(A,A,A) is the (normalized) number of 3-APs in A, including degenerate ones. Then

As(fi, fo f3) = 22 Y en(ki(x—d)+kox+ks(x+d)) fi(k) fa(k2) f3(k3)

xd ky ke k3
= N2 Y filki) falke) f3(k3) ZeN (ki + k2 +k3)x+ (ks —ki)d)
ki k2, k3
= Zfl (k1) fa(ka) f3 (ky Zezv (2k1 +k2)x)
N7
= Zfl —2k) f3(k).

In particular, let f| = f> = f3 = A be the characteristic functions of A. We then have

A3(AAA) = Y Ak)A(-
k

= &+ Y A(k)?A(—
k=£0
Ak) k#0

Naural to let f4(x) = A(x) — a be the balanced function, which has fA(k) = {O k=0

Then
A3(A,AA) = As(a, 0, ) + A3 (fas fas fa) = & + A3 (fa, fa, fa)

since in each of the other 6 terms some argument has f supported away from zero, and some
argument has f supported at zero. We conclude that:

|A3(A,AA) — | = |As(fas fan fu)

< Y | falk) ?
k
(yZ@w-ar)

X

= (yE 0w - 2040 +0%) ) | .

= a(l—a)|/fal|.-

COROLLARY 49 (Base case). Suppose 0. > . Then A contains ©4(N*) 3-APs.

)

N

Ja

[
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PROOF. [|fall.. < [Ifally = & (#A(1— ) + (N —#A)a) = 20(1 — ct). Thus

NZZA Ax+d)A(x—d) > o —20%(1 —a)?

O

Idea: If £, (k) is large for some k, then f correlates strongly with the function ey (kx), which is
constant on relatively lengthy APs. This forces f4 to be relatively constant along such progressions,
showing that the restriction of A to such a progression has somewhat larger density, at which point
one can give an argument by induction.

THEOREM 50 (Roth 1953). For all oo > O there is No = No(@) such that for odd N > Ny and
A C Z/NZ with density at least o, A has 3-APs.

PROOF. By downward induction on (“density increment method”). Specifically, we show

that for any o > 0 if the theorem is true for o + <5 is it true for o as well. Applying this to the
infimum of the & for which the Theorem holds shows the infimum is 0.
Let A C [N] have density a. In order to deal with “wraparound” issues embed A in Z/MZ

where M = 2N + 1 and let
Alx)—a 0<x<N
fA(x)_{o N<x<M.

and

Iy () 1 0<x<N
x:
N 0 N<x<M

so that A = f4 + a1, as functions in Z/MZ. Repeating the calculation above we find
A3(A,A,A) = a®As(1y, 1y, 1y) + seven terms .

Here, A3 (1y,1y,1y) can be computed exactly, and each of the other error terms has the form
A3 (f1, f2, f3) where each f; is either f4 or the balanced version of a1y (since fa (0) =0). Now by
C-S and Parseval,

A3 (f1, 12, f3)| = Z Si(k) fo(=2k) f3(k) | <

k(1)

1 11 £ill2

for any permutation (i, j,k) of (1,2,3). Now | fall, = (57 (aN(1—0a)?+(1 —OC)NOCZ))]/Z =
(525) " (a(1 — @))"/* and

IN+1
2 2\ \ /2 1/2
alN—ocﬂ 2:a<ﬁl/[ (N(AITH> +(N+1)(%> )) :aw %.

M

IN

It follows that each of the seven terms is bounded above by one of || fA”w O‘Tz or || fAHoo 23/[2 or

HfA || ¢, each of which is at most ||fA || . Setting € = ‘1"—3 we divide in two cases:
17



(1) (“‘quasi-randomness”) If H fA Hoo < € then we have shown:

ol o
A3(AAA) > o’ 720 > 7
(2) (“structured case”) Suppose instead ‘A(k)’ > ¢ for some k # 0. We will then construct a
longish AP P C 7 /M7 on which AN P has larger density, and then apply the induction
hypothesis to AN P, noting that any 3-AP in AN P is an AP in A.

(a) Let L, bea parameters to be chosen later.

(b) Thereis 1 <r< M 57 such that kr has a representative of magnitude at most 6L (if not
thenthereare 1 <rj <r < SML such that kry, kr, have distance at most 8L, and take
r=ry—ri).

(c) LetP=r[L]={ ]r} 0 Then ¢y, is roughly constant on any progression b+ P: since
kr has a representative of magnitude at most 6L,

k SL?
lex(b+ jr) —ex(b)| = lex(jr) — 1| =2 |sin (nﬁ—;J) ' <2m—-

M

(d) We now compute f4 by averaging over all translates of P:

e < |]?A(k>‘
= 1\_/1 Z ZfA b+y)e_(b+y)
b(M) yEP
1
< |y Y e (b ZfA b+y) ZZZ (b+y)lle—k(b+y) —e (D))
b(M) yeP b T yeP
1
= |y Y e (b ZfA b+y)|+elfally,
b(M) yeP
that is )
€ T
Epe_i(b)E P ——
| 114 k( ) be—l—PfA( )| 2 \/M
(e) (Endgame) Let ¢(—6) be the phase of the term in the paranthesis. Then we have
found )
£ /4
Epe_i(b)e(0)E, > - .
b€ k( )e( ) €b+PfA(x) =9 \/]\_4
Since f4 averages to zero, this can also be written as
e 2rn
Ey,(e_x(b)e(0)+1)E ———.
b(e—k(b)e(0) +1)Erepipfalx) > 5T UN

The real parts of (e_x(b)e(6)+ 1) are in [0,2]. Get b such that

2
Exepipfa(x) > Z TN
Therefore, for N large enough, the restriction of A to b+ P has density at least o+ % =
o+ ‘f—g, and P itself is long.
0J
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REMARK 51 (Corner cases). (1) Varvanides argument gives @ (N?) 3-APs.
(2) Degenerate triples.
(3) The claim in Z and wraparound.

In fact, we have shown:
THEOREM 52. Let A C {1,...,N} have density > m Then A has a 3-AP.

The best result to date is

4
THEOREM 53 (Bloom [2]]). Let A C {1,...,N} have density > %. Then A has a 3-AP.

6
Previous results include Bourgain’s 101%)1g01%N [4] and Sanders’s % [10]. In the finite-
field setting it is possible to break the @ density barrier; see [1].

Compare also

THEOREM 54 (Sarkozy, Furstenberg). Ler A C {1...,N} have density > (log logN)fz/S. Then
there are distinct a,a’ € A such that a —a’ is a perfect square.

2.1.3. Remarks: additive number theory.

e Szemeredi’s Theorem and higher-order Fourier analysis.
e Corners Theorem.
e Sum-product; Bourgain—Katz—Tao.

2.2. Dirichlet characters and the Fourier transform on (Z/NZ)*
2.2.1. The Ramanujan sum (Lecture 9, 22/1/2016).

DEFINITION 55. The Ramanujan sum is cy(k) = ZZ:(N) en(ka), that is the fourier transform of
the characteristic function of (Z/NZ)™.

n nlk

0 ntk

PROPOSITION 56. Y, ca(k) = { , 50 that ¢y (k) = ¥q)(kn) A1 (g), and in particular

cn(1) = w(n).
PROOF. We sum:

ch(k) = ch/d(k) = Z Z en(ka) = Z en(ka) = {g Z‘fk :
din din din (aargz):d a(n)

Now apply M&bius inversion. U

COROLLARY 57. ]l(x,N):l = %{Zk(N) Zd|(k7N) d[,L (%’) eN(kxxa) = Zk(N) (Zd\(k,N) %‘LL (%/)) eN(kx)
2.2.2. Basics.
e Construction
For each a € (Z/NZ)*, let M, € U (L*> ((Z/NZ)*)) be multiplication by A. Clearly M, M), =
M, so this is a commuting family of unitary operators, hence jointly diagonalizable. Let a —
x(a) be an eigenvalue system. The multiplicative relation above gives x(a)x(b) = x(ab) so
x: (Z/NZ)* — C* is a group homomorphism
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Every associated eigenvector f satisfies f(a) = (M,f) (1) = x(a)f(1), so the eigenspace is 1-
dimensional and spanned by . Conversely, every ¥ € Hom ((Z /NZ)* ,C) lies in an eigenspace,
and we see Hom ((Z/NZ)* ,C) is an orthonormal basis of L? ((Z/NZ)*) (prob measure).

DEFINITION 58. A Dirichlet character (of modulus N) a group homomorphism (Z/NZ)*
C*, or equivalently its pullback to Z: a multiplicative map ) : Z — C such that y(n) = 0 iff

(n,N) # 1.

EXAMPLE 59. The Legendre symbol (%) and its genearlization the Jacobi symbol are Dirichlet
characters mod p, N respectively.

For every N we have the principal character Yo(n) = 1z /nz) (n) = {(1) EZ:%; - 1
1 n=1(4)
The map x4(n) =< —1 n=—1(4) is the unique non-principal character mod 4.
0 2n
o x , 1 n=a(N)
REMARK 60 (Motivation). Fora € (Z/NZ)™ we can expand the delta-function 8,(n) = {0 0 a(N)

in our basis:
1
0y,(N) = O X = ——x(a)x
M) =Y (x.8)x ZN¢(N)X< o) ZN

where y(n) = j(n) = x~!(n) = x(n1) is the inverse character. Then in a sum over the residue

class we have
IICE 5o L 2@ ¥ (s

x>n=a( ¢ X(N) n<x
where we hope that the summand w1th the principal character y = yo(n) = 17/nz)" (n) gives the
main term, and there is cancellation in the other terms.

e Primitive characters (Lecture 10, 25/1/2016)
Note that if x’ is a Dirichlet character mod N’ where N’|N then we can obtain a Dirichlet character
: x'(n)  (n,N)=1

mod N by setting y(n) = {O (nN) =1
imprimitive (that is, it does not arise from this construction for any proper divisor N’|N) we say it
is primitive. Given a Dirichlet character y and g € Z say ¢ is a period of ) if whenever a,b are
prime to g and a = b(d) we have x(a) = x(b). Note that N is always a period, and that if  is
imprimitive as above then N’ is a period.

If N > N’ we say that ¥ is imprimitive. If  is not

LEMMA 61 (The conductor). Let ¢()) be the minimal positive period of X.
(1) If q is a period then so is (q,N).
(2) More generally, if q1,q2 are periods then so is their gcd.
(3) Let q be a period. Then there is a unique character ' mod q which agrees with ¥ on n
prime to Nq.
(4) The minimal period divides all periods, and the resulting character is primitive.
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PROOF. (1) If ¢ is a period then so is xg + yN for all x,y; (2) See PS2; (3) Let n be prime to g.
For any j such that n+ jq is prime to N (for example, j can be the produt of the primes dividing N
but not n) set x'(n) = x(n+ jq), noting that the RHS is independent of the choice of j since g is a
period. This is clearly multiplicative and uniquely defined. (4) Follows from (2). U

DEFINITION 62. We call ¢(x) the conductor of q.

e Values

For fixed a € (Z/NZ)™ we will consider the possible values ¥ (a) as x ranges over (Z/NZ)*. For
this let r be the multiplicative order of @ mod N. Then for each ), x(a) must be a root of unity
of order dividing r. The set { %(a)}xe(zﬁvi)x is a finite group of roots of unity, hence cyclic (a

finite subgroup of a field), say of order s|r. It follows that y(a*) = 1 for all y € (Z/NZ)™. Let &
be the characteristic function of 1 € (Z/NZ)*. Then ﬁzxX@’) =Y, (61,%) x(a) = 61(a). In
particular, if ¥ (a*) = 1 for all  then a® = 1 and hence s = r. It follows that the set of values { ¥ (a)}
is exactly the set of roots of unity of order r. Finally, let ¥ be such that x(a) = &, is a primitive
root of unity of order . Then multiplication by x’ gives a bijection between {y | x(a) = ('},

{ x| x(a) =gt } so all these sets must have the same size. We have shown:

PROPOSITION 63 (Existence of characters). Let a € (Z/NZ)™ have order r. Then for each

root of unity € U, there are W) Dirichlet characters x mod N such that y(a) = .

.
2.2.3. L-functions and Dirichlet’s Theorem on primes in arithmetic progressions (Lec-
tures 11-12, 27,29/12/2016). We now reprise the argument of Theorem [I7]

DEFINITION 64. For a Dirichlet character y let L(s; ) be the Dirichlet series Y~ x(n)n~".

LEMMA 65. L(s; x) converges absolutely in R(s) > 1, where it has the Euler product L(s; ) =
I, —x(p)p~)~"

EXAMPLE 66. Let yy be the principal character mod ¢g. Then L(s; o) = [Hp‘q (L—=p)] &(s).
In particular, L(s; o) continues to R(s) > 0 and has a pole at s = 1.

LEMMA 67. Let x be a non-principal character. Then L(s; ) ) converges in R(s) > 0.

PROOF. Wehave Y, ) X (a) = Z;(q) x(a)=0(q) (x0,x) =0sothe series },, x(n) is bounded.

Foro >0 {n"°}, _, converges monotonically to zero so by Dirichlet’s criterion the series Y~ x(n)n~
converges. U

(o)

PROPOSITION 68. Let )y be non-principal. Then L(1;%) # 0.

PROOF. Consider the Dirichlet series Z(s) = [, L(s; x) (this is roughly the Dedekind zeta-
function of K = Q(&y)). The Euler factor at p{ N is

H 1
2 (L=x(p)p~*)
Suppose that p has order »r mod N. By Proposition this proudct is exactly

[ mo- Cp_s)] —@(N)/r

Ceny

(1 . p—rs) —9o(N)/r
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since [T¢ey, (1 —8X) =1 —X" (the two polynomials have degree r, agree at the r + 1 points u, U
{0}). It follows that Z(s) is a Dirichlet series with non-negative coefficients, and in particular that
Z(o) > 1 for o > 1. Suppose x # x. Thenif L(1; ) = 0 then also L(1; ) = 0 and so the product
of the two zeroes will cancel the pole of L(s; xo) at s = 1, a contradiction.

The real case requires more work, and we give three proofs.

(1) [5 pp. 33-34] Suppose y is real and L(1;) = 0. Consider the auxiliary Dirichlet series
y(s)= %, which converges absolutely in R(s) > 1, is meromorphic in R(s) > 0,
and is regular for R(s) > % (the numerator is regular at s = 1 and the denominator is non-
vanishing in R(s) > 1). Its Euler product (convergent in R(s) > 1) is

1—p™* 1+p~* l+p"
H(l_p(s)(lp_ ) :H( (_+P : - H +Pﬁs

ol xP)p~*) g (L=x(P)p™*) =i 1P

In particular, y(s) = Y~ a,n~* for some positive coefficients a,. Now consider its Tay-
lor expansion about s = 2, which has radius of convergence at least % Differentiating m
times we see Y™ (2) = (—1)" Y>1an (log n)m n~2 so there are b,, > 0 such that

V)= X (1) bn(s=2)" = ¥ b2

m>0 m>0

Now any 5 l < 6 <2 is in the domain of convergence and since (2 — &) > 0 we have
y(o) > bo = y(2) > 1. But y(3) = 0 due to the pole of the denominator there.

(2) By Landau’s Theorem, the domain of convergence of Z(s) ends with a singularity on the
real axis. If L(1; x) = O for some yx then this will cancel the simple pole of L(s; xo) there,
so that Z(s) will be regular at s = 1. Since {(s),L(s;)x) are regular on (0,1) it would
follow that the series definite Z(s) converges in R(s) > 0. However, for real o > 0,

Gt = [T (1) =T (1) T2 p e

PN PN

which diverges for ¢ = ﬁ by comparison with the harmonic series.

(3) Replacing x with its primitive counterpart changes only finitely many Euler factors in
L(s;x) and doesn’t affect vanishing at s = 1. Now if ¥ = 1 then x(n) = y4(n) = (%)
(Kronecker symbol) for some quadratic discriminant d, and we have

THEOREM 69 (Dirichlet’s class number formula 1839; Conj. Jacobi 1832). Ford <0,

L(1;24) = 27|m|(,/2 >0. Ford >0, L(1;x4) = h(‘;)ll/‘;gg > 0 where w is the number of roots

of unity in Q(v/d) (usually w = 2), h(d) is the number of equivalence classes of binary
quadratic forms of discriminant d and € is a fundamental unit of norm 1.

O

REMARK 70. For any character ¥ mod N, write x’ for its primitive counterpart. Then (g (s) =
[T, v) L(s; x') is exactly the Dedekind zetafunction of K = Q(&y). Since L(s; x;) = £ (s) has a sim-
ple pole at s = 1 with residue 1, we have by the class number formula for Dedekind zetafunctions
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that o()/2
2n hR
H L(1;x") = Resg—1 Lk (s) = H—l/z >
20 w Al
where & = C1(Q({y)) is the class number, R is the regulator, A is the discriminant and w is the

numebr of roots of unity in the field. Finally, since L(1;x) = L(1;X") [ v (1=x'(p)p~") we see
that either both vanish or neither does.

THEOREM 71 (Dirichlet 1837 [6]). Let (a,N) = 1. Then there are infinitely many primes p
such that p=a(N).

PROOF. For each character y mod N and s with R(s) > 1 considerlogL(s; x) =Y., X1 X (p)"p™"™
(note that | ¥ (p)p~*| < 1 so we may use the Taylor expansion for log(1—x(p)p~). Since Y., ¥.>0 p™" <

Yoo Ymson ™ =Y, ﬁn*Z =Y. ﬁ = % we see that for R(s) > 1 we have

logL(s;x) Zx p)p +0().
Now o Xy 2(a)2(n) = Ky (80,) 2 = 8. Thus
Y p=Y&pr Z% a)logL(s;x) +0(1).

p=a(N) p

Now let s — 17 through real values. For non-principal )} we have logL(s; ) — logL(1;%)
which is finite by the Proposition. For the principal character, log L(s; xo) — oo since L(s;Xo) =
[Tyin (1 =p~*) & (s). Tt follows that the RHS diverges as s — 17. By the MCT we conclude that

Y —=e.

p=a(n) P

In particular, there are infinitely many such primes. U

REMARK 72. In fact, our proof shows

1
-1 = loglogx+ O(1).
Y » o) gl (1)

Moreover, it is natural to believe that the primes are evenly distributed between the residue
classes. We will prove a quantitative version, but note the theory of “prime number races”.

2.2.4. Additive transform of multiplicative characters: Gauss’s sum (Lecture 12,29/1/2016).
Consider the (additive) Fourier transform of a Dirichlet character y mod N. Since % (k) = ~ Yoy X (a)en(—ka)

we note that for u € (Z/NZ)™ we have

N 1 ¢
X (ku) = N% (—kau)
1 /
= X)) x(au)en(—kau)
N a(% !
= 22w



In particular, from the point of view of computing | (k)| we can replace k with uk.
LEMMA 73. Fork € Z/NZ there is u € (Z/NZ)™ such that ku = (k,N) mod N.
PROOF. Let g = ged(k,N), k' = g, N = %. Then ku = g(N) is equivalent to K'u = 1(N').

Since (k',N") = 1 there is &’ prime to N such that k'’ = 1 (N’), and it remains to find u = u’ + kN’
which is prime to N. The existence of such j was verified in Lemma|[61] O

Accordingly we’ll now assume k|N. Taking absolute values

0P =1 ¥ 2@xBey (kb a))
a,b(N)

we change variables by setting b = ca for ¢ € (Z/NZ)™, getting

2B = 5 L xl@)x(ac)ey (k(ac—a))
a,c(N)
1 /
= 3 L X(c)en(k(c—1)a).
Nza%) "

1
PN _
0P =5 T Al).
c=1(N/k)
LEMMA 74. Let q|N. Then {c € (Z/NZ)" | c=1(q)} is a subgroup of (Z/NZ)™, and Y is
trivial on this subgroup iff q is a period.

PROOF. This is the kernel of the reduction map (Z/NZ)* — (Z/qZ)", so is a subgroup. If g
is a period then whenever ¢ = 1(q), x(c) = x(1) = 1. If x vanishes on the subgroup then given
a,b prime to N with a = b (q), let @ be an inverse mod N. Then 4 is also an inverse mod g, so that
ab=1(q), x(ab) =1 and hence y(a) = x(b).

We have therefore proved (for the principal character see Proposition [S6)): U

PROPOSITION 75. Let ) be a non-principal Dirichlet character mod N, and let k € Z/NZ.

With g = m we have:

QW) q is a period of X

7)== VW@ .
0 q is not a period of x
COROLLARY 76. When x is a primitive character we have

. L (kN)=1
_JUN
|2 (k)| {ON (N> 1

2.3. The Fourier transform on R/Z and the Poisson summation formula

2.3.1. Fourier series (Lecture 13, 1/2/2016).
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2.3.1.1. L? theory.

o {e(kx)};cy CC*(R/Z) C C(R/Z) C L*(R/Z) is a set of characters, hence an orthonor-
mal system in L?(R/Z) (prob measure). The unital algebra they span is closed under
complex conjugation and separates the points, hence is dense in C(R/Z). This is dense
in L*(R/Z) so {e(kx)},c; is a complete orthonormal system. Set

F k) = (e(kx), f) 2 j2) = . f(x)e(—kx)dx.

e Then for f € L? we have f = Yz f(k)e(kx) (convergence in L?). This must converge
almost everywhere, but at no specific point.

e We have Parseval’s identity Hf”%z =Yiez |<ek,f)]2 = ”]?HLZ(Z)'

e Asusual the integral defining f(k) makes sense for f € L! (note that L?>(R/Z) C L'(R/7Z)
since the Tﬂe is finite), and we note HfHL""(Z) <Al myz)-
o Asusual (fxg)(k) = f(k)g(k).
We are interested in pointwise convergence of the Fourier expansion. We divide this in two parts.
2.3.1.2. Smoothness = decay. Suppose f € C'. Then integrating by parts shows that for k # 0,

A 1 4
Fk) = 5 1 6).

By induction, this means that for £ # 0 and r > 0,

A £ ller
|F (k)| < (275,

K[~

COROLLARY 77. For f € C?, the series ¥ ey, f(k)e(kx) converges uniformly absolutely.

EXERCISE 78 (PS2). Supose that for r > 1 we have‘f(k)‘ < |k|7"7€. Then ¥, f(k)e(kx) €
C(R/Z).

2.3.1.3. Convergence to f.

N k A
DEFINITION 79. Set (5, f) (x) = Ejg< f (K)e(kx) and (0w ) (¥) = Epn (50f) () = Epg (1= 5) F(R)e
The second sum is smoother, so we expect it to be better behaved.

LEMMA 80. s,f =D, * f, onf = Fy * f where

sin (2 (N + 1) x
Dy(x) = Z e(kx) = (Sin((nx)Z) )
|k|<N
(“Dirichlet kernel”) and
1 1 (sin(wNx) 2
=y 2= (Singas)

(“Fejér kernel ”).
Both kernels satisfy [g 7, Dn(x)dx = [g /; Fn(x)dx = 1. Moreover, Fy(x) > 0 for all x.

PROOF. Calculation. O
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THEOREM 81 (Fejér). Suppose f € L'(R/Z) is continuous at x. Then limy_e. (ox f) (x) = x.
In particular, if f € L' (R/Z) and lim,,_se. 5, f (x) exists, it equals f(x).

PROOF. We have

onf()—fx) = [ Fn()f(x+y)dy— /]R _FvO)f()dy

R/Z
= [ B0 (Fley) = £00)dy.
R/Z
Given € > 01let 0 < § < % be such that | f(x+) — f(x)| < €if [y| < §. Then
owf ()= fl <e [ A)dy+Cy [ () +ADdy
ly[<8 o<

_|y|§§
where Cy(6) = max { Fy(y) | 6 <[y| < 2} Since [y <5 Fn(y)dy < Jg /7 Fn(y)dy =1 we see that

)
lonf(x) = f(0)| < e+ (IFllp + (1 =28) [ (x)]) Cn(6).
Since Cy(8) = O5(N~1) (PS2), the claim follows. O

REMARK 82. The Dirichlet kernel takes negative values. Since ||D,]||;1 > logn, the proof
would not have worked with it.

In fact, Fejér’s theorem can be strengthned to
THEOREM 83 (Fejér). Suppose f € L'(R/7Z) has hmx_m + f(x) =Ly. Thenlimy_ (Onf) (x) =
%. In particular, if s, f (x) converges it converges to that limit.

REMARK 84. Suppose f has a jump discontinuity at xp and is otherwise smooth. Then
snf(x) = f(x) for all x # O (pointwise), but this convergence is not uniform: for fixed N, sy f(x)
has a “spike” of height about L, +c¢ (L4 — L_) ata point xy = xo+ %\,, an similarly imy s sy f (X0 —
av) =L_+c(L-—Ly).

2.3.2. The Poisson Summation formula (Lecture 14, 3/2/2016).

LEMMA 85. Let ¢ € S(R). Then ®(x) =Y ,c7 ¢(x+n) € C*(R/Z).

By our Fourier inversion theorem, this means that

(2.3.1) D(x) = ) d(k)e(kx
keZ
where
N 1
dk) = /R/ZCI)(x)e(—kx)dx:/O (é(p(ﬂ—i—x)) e(—kx)dx
n+1
=,éé o(x)dr = [ pLo)e(~ke)dx

DEFINITION 86. For f € L'(R) set f(k) = g f(x)e(—kx)dx.
PROPOSITION 87 (Poisson sum). Let ¢ € S(R). Then

Y o(n) =) ¢k

ne’ keZ
PROOF. Setx =0 in (2.3.1). O
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2.4. Application: Polya—Vinogradov
2.4.1. The meaning of ‘“Smooth cutoff”’ (Lecture 15, 5/2/2016).

LEMMA 88 (Cutoff at ). Let ¢ € S(R), and let X > 1. Then ¥,ez|0 (%)| = Op(X). In
particular, for any bounded f: 7. — C we have

Y 19 () = 0p 1. (X).

nez

PROOF. Fix T > 1. Then there is C = C(¢,T) such that for |x| > 1, |¢(x)| < Cx~T and hence

Llo(p) < *X (5)

|n|>X |n|>X

< 2C (1 +/X°° (%)Trjx)
s [
2C (x + %)

Y o ()] <@ +Dl0l.=0px).

|n|<X

IN

Also,

O
We also need the “dual” version

LEMMA 89. Let ¢ € S(R) and let X > 1. Then for any T > 1, ¥, >1 |¢ (nX)| = Og 1 (x-T).
In particular, for any bounded f: 7. — C we have

Y f(m)e(Xn) = f(0)p(0)+O0s_pr (X T).

nez

PROOF. Let C be such that |@(x)| < Cx~T for |x| > 1. Then

Y [p(nx)| <20 Y (nx) T = 2.

T
=1 = X

2.4.2. Smooth version, applications.

THEOREM 90 (Polya—Vinogradov). Let x be primitive mod q > 1 and let ¢ € S(R). Then
Lacz X (m)e ("F) <o /4
PROOF. Several stages.
(1) The sum is long: We have the trivial bound

Lre (") < £ Jo () =00t

In particular, the clann is trivial unless N > , /g, which we assume from now on.
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(2) Gauss sum: Since x is primitive we have y(n) = %Zk@ X (k)eqy(kn) so
n—M\ 1(x) _ n—M
sz(n)qo < v ) = é%x(k)eq(kn)w ( v ) :
(3) Poisson sum: Let f(x) = ¢ (:54) e (%) Then f(&) = Ne <—M(§ - %)) 0] (N(§ — §)>
and hence
B ) o o
and
’szm)(p(n;zw) Z_ Zze( n_g)q)(mn_g)).

(4) Rapid decay of ¢: This will shorten our dual sum. We choose & so that‘ g’ < % at which
point the proof of Lemma [§9]still applies to the inner sum, so

_ M) Y (ke <Aik> ¢ <]Lk> +NT;X) g0 (N1)..

T W<y 1 1

The remaining sum is certainly at most Y. x> ‘(f) (%) ‘
(a) If N < g we apply Lemma 88| to get the bound
n—M Nt(y) (q) _T1 1/2
— = 2 =
Zx(n)qo( v ) . Oly) ol =) =0").

nez
(b) If N > g we may apply Lemma [89] get for any T,

¥ xte (") = wwo( (%)) +ewow )

nez

= 0(4').
0

REMARK 91. Note that the precise choice of ¢ and the precise values for 7 are immaterial.
This can be extended to non-primitive %.

COROLLARY 92. Let ) be primitive, of conductor q > 1. Let n be minimal such that (n) # 1
(perhaps x(n) =0). Then n = 0(q'/?).

PROOF. Let ¢ be supported on [—¢€,1+ €], valued in [0, 1], and satisfying ¢ = 1 on [0, 1].
Suppose that y(n) = 1 if |n| < N is prime to g. Then on the one hand

Y x(n) 0(q'?)

nez
and on the other hand
Y x(n) ( ) >N—2eN = (1-2¢)N.
nez
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It follows that
N=0(q"?).
O

This can be improved, noting that if y(n) = 1 up to some y then the bias toward 1s continues
much farther.

DEFINITION 93. Call n € Z y-smooth if every prime divisor of n is at most y. Let y(x;y)
denote the number of y-smooth numbers up to x.

In those terms ,if y(n) = 1 for n <y then also y(n) = 1 for all y-smooth n, with the same ¢ as

before,
Y x(n) <>>q/(xy) Zex—zf.

nez y<p<qP
Now suppose that 1/x < y < x. Then (since no integer up to x is divisible by two primes > /x) we

. v =k~ E []ze-1- ¥ 2

y<p<x y<p<x P
It follows that if x(n) = 1 up to y, and if y < x < y? then for any & > 0

1
Oe(q¢'?) > (1-2e)x—1-2x ) —
y<p<x P

1 1
= (1-2¢)x—1—-2x|logl — | —logl — —
( €)x x[og ogx+C+0 (logx) oglogy—C+ 0O (logy)}

logx X
= 1-2¢e—-21 o(— .
A *logy N (logX>

1
Given 6 > 0 suppose y = 272" Then we have iggx = 14— =./e(1+8)" and hence
2y \/z(1+5)

X
0 2(1—2e—1+2log(1+8))x=0(q"?).
(i) +20 +2log(148))x=0(g"")
Now given a small § > 0 choose € < log(1+ 8). Then the LHS is Q(x), and hence
x=0(¢"?)
and 1
y<Le qﬁ+£-
The argument above (due to Vinogradov) gives:
1
THEOREM 94. There is n <¢ g2 © such that x(n) # 1.

Further improvement:
THEOREM 95 (Burgess). ‘):ngtx(n)‘ LO ift > q4+8

. . 1 . . : .
COROLLARY 96. First non-residue at g3 *¢. Vinogradov trick improves this to q“\/EJr

EXERCISE 97. Apply Vinogradov trick to Burgess bound.
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Theorem [90]is essentially best possible.

PROPOSITION 98. There are N,M such that ¥ ,c7 x(n)@ (";,M) >

s

PrROOF. Consider

T () E 209 (“37)

nez

< gmax
_CIM

rgzx(n)w (";VM)‘ :

Applying Poisson sum as before we have

n—-M\ N1T(X) o _ N k k
eq,(—M n = k N(n— - eq(—M)e| —M(n——) | .
T i) o (") =" gL Lo (m q>)Mz(:;) (Me (M%)
Now since M is integral, e (—Mn) = 0 and Y5y €4 (M(k—1)) = {g I;; i SO

_ Nr(%)qz ¢ (N(n—1)> _

q nez q
Using Lemma [89 we see that

Y x(me <";,M)‘

nez

N
p(— I <
q)(q)’—f—sma ) < max

N
q_
Vi, (
Now @(x) is an analytic function, and in particular is non-vanishing on [0, 1]. Letting N = gx where

O (x) # 0 gives

Y x(n)e (%) > /qx|@(x)| — small.

max
M nez

Taking N = [gx] will be fine since ¢’(x) is bounded. O

2.4.3. Sharp cutoff. For the following, see [S] , [9, §9.4], or [8, Ch. 12] which gives a good
constant and also covers the smooth case.

n=M+N

(1) For y primitive, ):Zi%flv x(n)! < glogg, and for ) non-principal ‘Zn:M i) x(n)| <

6./qloggq.
(a) On GRH (Montgomery—Vaughan Inv Math 43; simpler proof by Granville-Soundararajan
JAMS 20 2007) |Yr=i Y 2 (n)| < /gloglogg.
(b) For all g there are N, M such that |Y/=3 ) x (n)| > ‘/75
(c) (Paley) There is ¢ > 0 such that for infinitely many quadratic discriminants d,

n=M+N

Y xa(n)

n=M+1

max > cV/dloglogd .
MN

9

(d) These bounds (not Burgess) are trivial for N <, /q. Itis believed that |222%ﬂv x(n) ‘ <¢
1
N2gt .
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2.4.4. Connection to Dirichlet L-functions [see Goldmakher’s Thesis]. Set Sy (1) =Y,z x(n)¢ (%)
(with @ € S(R) having the same perity as x) Then for R(s) > 1

[ = 2E o [ o(2)r

n=1

and the manipulation is justified by the absolute convergence. Now [, ¢(t )ts is holomorphic for
R(s) > 0. Our bound Sy (1) ¢ /g shows that the LHS converges absolutely for R(s) > 0, and on

the RHS the same is true for the Mellin transform (2 5" ¢ ()t o 4. It follows that L(s; x) extends
meromorphically to R(s) > 0. In fact, the extension is holomorphlc since by varying ¢ we can
ensure the denominator in the following expression is non-vanishing at any specific points

I Sx(f)fs%

L(s;x) = —= .
2J5 @
EXAMPLE 99. L(1;x) < logg.

PROOF. [y (1) 14 = [ Sy ()12 de+ [ Sy (1) 2 dr < [l 17" de 4 /g [;7 172 dt = O(log g+
1). O

EXERCISE 100 (Convexity bound). L(%;)() < q'*.

CONJECTURE 101 (ELH). L(%;%) < ¢°.

NI

1
_176+8,

THEOREM 102 (Burgess). L(1:x) <¢ g

2.5. The Fourier transform on R”

LEMMA 103. Assuming all integrals converge,

o(ax 1+ b)( /(pax+b o) dx = (_b)(f)(k>

integration by parts shows (smoothness therefore decay)

¢(k) =

1 —

oD (k).
(2mik)? ®)
and differentiation under the integral sign gives (decay therefore smoothness)

O (k) = (—27i) ¥ p(x).
COROLLARY 104. Let ¢ € S(R). Then ¢ € S(R).

THEOREM 105 (Fourier inversion formula). Let ¢ € S(R).

_ / d(k)e(kx) dk
R



PROOF. We have

Eoirnin Lo (£)e()

ne keZ
Letting T — oo, the LHS converges to ¢@(x), the RHS to [ ¢(k)e(kx) dk. O

LEMMA 106 (Fourier inversion). Let f € L'(R) and suppose that S = [ f(1)e*™** dx con-
verges as a symmetric improper integral for some t. Suppose that f is continuous at x. Then

S = f(x).
PROOF. Let ¢(u) € CZ(R) be odd. Setting S, (x) = [*, f(t)e*™**dt = (D, * f) (x), we consider

the average
/ du—/m(p(u)STu(x)du—> </w(p(u)du)S.

On the other hand,
U=—oo =u

7 [ owmsiman= [ aupm) [ a@m [ ave w00y
0 = I=—u y=—0o0

converges absolutely so we may change the order of integration and obtain

1 /T y=teo T omit(-y)
. /0 O(u/T)Su(x)du = / dudye(u/T)f(y) /,: dre
1 yf—i-ood u=oo 2Mi(x—y)u _ ,—27i(x—y)u q
- — T
| are) | e ey o)
_ e ¢(T(x—y))
= 2—7”./y20o dyf(v) Xy
_ 1 o(Ty)
= 5= / Bfx+y) ==
Now%is the Fourier transform of [“__ ¢(¢)dr. In particular, fR 2my dy fR 2my dy 10 o(u)du=

— Jo_ @(u)du. It follows that
(/Ow ¢(u) du) S— (/:rp(u) du> flx) = %/Rdy [f(x) = flx+)] @(yTy) .

Choosing 0 such that |f(x+y) — f(x)| < € for |y| < § and setting Cr = sup{|@(y)| | |y| > T} we

o(Ty) 1 o0) !
u)du||S — < dy+ — d C
] [owadis s <5 [\ F2 e il [P ek sl
and, taking T — oo and using Riemann—Lebesuge we get
” o0)
| otwan|ls-rx)1 < 5 .
0 Y lLY(R)
O

COROLLARY 107 (Fourier inversion formula). Suppose that f,f € L'(R) and in addition f €
C(R). Then f(x) = [g f(k)e(kx) for all x.
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CHAPTER 3

Dirichlet series and the Prime Number Theorem

We'd like to estimate ), <, a,, and we saw that it’s better to work with ), @, ¢ (%) We made
gains here via additive Fourier expansion of ¢ (Poisson sum). We will now make a multiplicative
Fourier expansion. We first investigate the associated transform.

3.1. Preliminaries
3.1.1. The Mellin Transform and zetafunction counting (Lecture 18, 26/2/2016).

DEFINITION 108. For a reasonable ¢ defined on R~ set

~ = dx
o65)= | oles
0 X
can call this the Mellin transform of ¢.

This is the Fourier transform on the locally compact abelian group R, isomorphic to R™ via

the logarithm map. We thus get:

>0’

THEOREM 109. Suppose ¢ decays rapidly enough. Then { extends to a meromorphic function,
and in any vertical strip where the integrals converge absolutely, we have

1 = —s
o) =5 /(c)<p<s>x ds.

3.1.2. Zetafunction counting.
3.1.2.1. Setup and motivation. Fix a smooth cutoff ¢ € CZ°(R). We then have for ¢ large
enough that

—joo

1 cHioo
- / ®(s)X°D(s)ds,

270 Je—ioo

Tao(y) = sglef, o0(g) o

assuming the integral and the series converge absolutely. Here D(s) is the multiplicative generating

series N
D(s) = Z amn”’.
n=1

We need ¢ large enough so that the series converges absolutely, and small enough to be in the strip
of definition of .

COROLLARY 110. When everything converges absolutely, we have

Lol <<(/ BIDE) |l ) x°




In particular,

<<8 XGaC+€ .

Fuo(l

We would now like to shift the contour of integration as far to the left as possible, depending
on the domain of holomorphy of D(s) and @(s). This would have the effect of making the X* term
smaller. Along the way we pick up contributions of the form X Res,—, ¢(s)D(s) where p ranges
over the poles of D(s). We are therefore motivated to investiate analytical continuation of D(s) as
far to the left as possible.

Why use a smooth cutoff? Suppose we took @(x) =1}y ). Then ¢(s) = %, and the integral

[ D(s)X* % may only converge conditionally.

3.1.3. Estimating a sharp cutoff: Multiplicative smoothing (Lecture 19, 29/2/2016). De-
fine (fxg)(x) = [0 f(y)g ( > 4 (Multiplicative convolution). Then in the region of absolute

Froe = [ rme(2)2

= /y_oy f(y)dyy /xo G)sg (g) d% = F(s)&(s).

Let wy(x) = Hn (Hlogx) for some positive test function 1 € C*(R) supported in [—1,1] and
integrating to 1. Here H = H(x) is the scale of the cutoff (we may take, for example, H = x* for
some 0 < e <1).

Let ¢ = yux 1 ) so that @y € CT(R) with @y (x) = 1 forx < e VH yy(x) =0 forx > e,
and 0 < yy(x) < 1 in between. It follows that

Zan%( ) Zan

Turning to the Mellin tranform, we have (with ¥ = y) that

o dx x y'/” dy _ /s
— | Hn(HI logy)y*'# = = (=
/0 n (Hlogx)x'— /O n(logy)y ) l//(H) :

(3.1.1)

> Z ‘an| .

71/HX§n§el/HX

so that

ouls) = ().

LEMMA 111. We have iy (0) =1, and

- [ nwexe {5
and in particular the estimates:

(1) For 8|s| bounded, Wy (s) =1+0 ()
(2) In the region |R(s)| < & we have for each k > 0 that

_ H*
9 (5)| <nacexp{ 7}
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Su

PROOF. Setting x = ¢° in the Mellin transform gives:

s) = /_wn(u)exp{%s}du.
Integrating by parts k times we get

k
e (s) "H/ n exp }du,

and taking absolute values we get

1T (s)] < % jl‘n(k)(u))exp{%(s)}du
k
{3 o
O

COROLLARY 112. @ (s) extends to a meromorphic function in C with a unique pole at s = 0,
Ress—o Pu(s) = 1, and we have the esimate

IN

o]

5as) < {o} H*
expy — ¢ ———
Pri(s P H |S|k+1

in |Rs| < o. In particular, Py decays rapidly in vertical strips away from its pole at s = 0, and the
Mellin inversion formula applies to it on any vertical line to the right of this pole.

Returning to our computation, the vertical decay gives us (for ¢ large enough)

Lo (3) =5 [ ¥ () x005,

1 Cc+ioco . s d
Zan:2_7ri/c_ioo w(%)X D(s)?s—{—O( Z |an|> )

n<X e /Hx<p<el/H)

and hence

Suppose that |a,| < n% ! and that D(s) continues to the left up to the line (o), picking up a

X Cac

pole at 0, and finitely many other simple poles p. Then the error term is O ( 7

Y a=(%)%

ac 1 Ky s ds o
Z, o Resi=o, D +Zt/f( ) Res,—p D(s )+2—m/( )q/<ﬁ)x D(s) > +0 (X /H)

) and we have

(if o < 0 there need also be a contribution from the pole at s = 0). Using our Taylor expansion for
W, we can write this as

ReSs—6,. D(5) o —pD(s) 1 /S ds .
) = ——3=0e T ¥ Ouc — P xp _/ — ) X*D(s)— X% /H) .
n}ga = +§p ; 5 (G)yf( ) ()57 +O0 (X% /H)

Now say |D(c +it)| < (1+]¢|)*. Supposing & # 0, we can instead write this bound as
) <|s|K > . The integral is then bounded above by

X° / v
R(s)=0

S K—1 o 17k Y / K—1—k
— d X°H — d

§)=0
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We thus get, for kK > K, that

Zan: XG‘“—I—Z

n<X Gac p

Ress—g,. D(s) Res;—p D(s)

XP +0(X% /H) +0 (HkX°> .

.. . Oac—O
The minimum is when H = X #T so we have for any &,

THEOREM 113. Suppose that a, < n%~1, that D(s) = Y.>1ann° continues to a meromor-
phic function with pole at 6, and finitely many more poles in {o < R(s) < 04} where 6 # 0.
Suppose that |D(c +it)| < |t|¥ and let k > K. Then

D(s)

Y gy = =0 yan v
nSX Gac p

ReSSZPD( )Xp+O<XGaC k+l >

(where if o < O there is the additional term D(0)).

3.1.4. Convergence of Dirichlet series (Proofs in PS3). Given an arithmetical function{an},?:1 C
C get the Dirichlet series D(s) = Y, a,n~* (generating function for multiplicative convlution).
Let R C C be its domain of convergence, R, be its domain of absolute convergence.

LEMMA 114. R is non-empty iff |a,| = O(n?) for some T.

PROPOSITION 115 (Domain of convergence). Fix so = oy +itg € C

(1) Suppose D(s) converges absolutely at so. Then it converges absolutely in the half-plane
{R(s) > oy}, uniformly absolutely in any half-plane {R(s) > oo+ €}.

(2) Suppose D(s) converges at so. Then it converges in the half-plane {R(s) > oy}, uniformly
in any half-plane {R(s) > oo+ €}. Furthermore, it converges absolutely in R(s) > oy +
1.

COROLLARY 116. Suppose R is non-empty. Then the interiors of R and R, are half-planes
{o >0} D{0o> 04}

DEFINITION 117. o, 0, are called the abcissas of convergence and absolute convergence,
respectively.

EXAMPLE 118. The abcissa of convergence and absolute convergence of (s) =Y, n°
is clearly o, = 1. The function blows up there by the MCT since ¥,,»;n ! = . But {(s) =

[,(1-p* ) and each individual factor is regular at s = 1 (the poles are at 2wilog pZ). We
conclude that there are infinitely many primes.

We can show a little more by elementary means. Let D(s) =Y.~ ;(—1)"n™°. This converges
for o > 0 by Dirichlet’s criterion, hence for R(s) > 0. For R(s) > 1 we have D(s) + {(s) =

2Y 5 (2k)™* =2-2758(s). It follows that {(s) = ]Dél) s on R(s) > 1, showing that {(s) con-

tinues meromorphically to R(s) > 0. Ats=1 — 21 ; has a simple pole wtih residue — 022, and
D(1)=Y", ﬂ = —log2 # 0 s0 {(s) has a simple pole at s = 1 with residue 1. We will later

_D(s)

{51 are removable.

see that {(s) is regular at 1 +it, t # 0 so the other singularities of
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3.2. Counting primes with the Riemann zetafunction (Lecture ??, 2/3/2016)

After Gauss it is natural to count primes with the weight log p. Riemann pointed out it is better
to count with with von Mangolt function.
Consider the logarithmic derivative

'(s d
—%((S)) = Zd—log 1— Zlogp

:ZA

n>1

Z Z logp

The latter series converges absolutely for R(s) > 1. Thus, for ¢ > 1,

ZA N 27rl/ e $)X°ds.

We have already seen that {(s) continues meromorphlcally to R(s) > 0, with a unique pole at
s = 1. Recall, however, that the logarithmic derivative has a pole at every zero and pole of the
original function, with residue equal to the order. Thus, shifting formally to some ¢’ < 1, and
assuming there are no zeroes on the line R(s) = ¢’ itself, we formally'

iA(")(p()ﬁf):@(l)X_g() PPX* 5 Cj@ )X"ds.
n= P

The first term is the desired main term, conjectured by Gauss. Assuming CC(( )) does not grow too

fast, the last term is clearly an error term. The problem is with the term in the middle — we have no
idea where the zeros are, or how many there are. If R(p) is close to one (perhaps equal to one) or
if they are very dense , these “error terms” could overwhelm the main term. In the next parts we
first analytically continue {(s) to all of C, allowing us to take ¢’ to —eo. We then establish enough
about the zeroes to prove the Riemann’s formula above. We then improve our control on the zeroes
(obtaining the “zero free region”) to obtain the Prime Number Theorem.

3.2.1. Analytical continuation of the Riemann zetafunction. Foreven ¢ € S(R) set ¢(rZ) =
Y.z @ (rn) — @(0). This decays faster than any polynomial at infinity, and grows at most like r~!
as r — 0. It follows that the Mellin transform

Z(o) = [ 002

converges absolutely for R(s) > 1. In that domain we may exchange summation and integration

to get
Z(@35) =28(s)P(s) -

Since @(s) can be chosen entire (say if ¢ is compactly supported away from 0),to meromorphically
continue §(s) it is enough to continue Z (¢;s).

PROPOSITION 119. Z(@;s) extends (AC) to a meromorphic function in C, (BVS) bounded in
vertical strips, satisfying (FE) the functional equation

Z(9:5) = Z(@;1—5)
and with simple poles at s = 0,1 where the residues are —@(0), ¢(0) respectively.

37



PROOF. Calculation, using Poisson sum:

Z(¢ss)

Now let ¢(x) =

By
/‘*”Zr—+/ n§2<pm]r__(,,(o)/0‘rsd_rr
ot g
fWZ) - "’io) + /f’ [z ¢<m>] sdr
1°°<p<z> 20, / g 00)

DEFINITION 120. Tg(s) = n~*/2T (%)

COROLLARY 121. Let §(s) =T'r(s)(s). Then &(s) has AC, BVS, the FE

and with poles at s = 0 (residue —1) and at s = 1 (residue 1). Moreover, { (k) =

E(s)=&(1—s)

THEOREM 122. {(s) itself is polynomially bounded in vertical strips.

0 fork € —27Z>.

PROOF. For R(s) > o > 1, {(s) is uniformly bounded by absolute convergence. By the func-

tional equation,

(-9 = 20

Stirling’s approximation shows:

RlogI'r (o +it)

In other words,

) —1 1 1
—Zloerm 1 ___+_1 21)+ 0
2 & 2 0g2 2 2 0g(27) ( )

o — o +it 1
C(o)+ (T) Rlogs — Eglog 2 +0 (;)

oc—1 /. o2 t c
C(G)+< > )log< 1+t—2>—§arcc0s<7~

o)+ 2 Logr— L F—EW(;)] ro(;)

2 212 ¢
c—1 Tt 1
C logt — —+0
(o)+ 7 og 1 + (t)

I'r(o+it) =C(0) |t]6T_1 e all <1 +0 (;)) :
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Note that the exponential decay term is independent of 6. Thus for s = o + it with 6 > 1 we have

(-9 = o= (140(3)) ¢

1
< |t]°2
Finally, we apply Phragmen—Lindelof. 0

COROLLARY 123. &(s) is of order 1.

PROOF. By FE enough to check for o > % There I'g(s) satisfies the bound by Stirling, and
& (s) grows at most polynoimally as we saw above. U

3.2.2. Functions of finite order.

DEFINITION 124. Call an entire function f of order< a if |f(z)| <¢ exp (|z|**%). The order
is the least & for which this holds.

Call a meromorphic function of order< « if it is of the form {Ec
a.

where f, g are entire of order<

LEMMA 125. The set of entire functions of order< Q (or finite order) is an algebra; the corre-
sponding sets of meromorphic functions are divison algebras.

LEMMA 126 (Jensen’s formula). Let f be holomorphic in |z| < R, continuous in the closed
ball, and non-vanishing on the circle and at the origin. Then

1 2n 0 B R
ﬂ/o log‘f<Re >‘d9—10g]f(0)]—|—f(z%: log| al

where the sum is over the zeroes in the ball, counted with multiplicity.

PROOF. Write f(z) = g(z)[Tj_; (z — zx) with g non-vanishing. Then the formula holds for g
since log|g(z)| is harmonic, and for z — z; by direct calculation. U

COROLLARY 127. Let f have order< a, and let {z; }._, enumerate its zeroes. Then Y., \zklfﬁ
converges for any B > .

PROOF. log|f (Rei9)| < R**€ for R large enough. By the maximum principle also |f(0)| <
R®"€ and hence R
Y log2< ) logi— <2R%*E

F(z)=0 fomo %
R/2<|zt|<R 0<|z¢|<R

2R

so the number of zeroes of f of magnitude between g and R is at most
finite contributions small radii,

Z P < c+ Z Y P <+ i yBn.o. (2n+1)a+s
n=N

n= N2"<|Zk|<2"+l

. Thus, ignoring the

< Z 2,(;3,“,8),1 ‘
n=N

Now choosing € small enough so that o + € < 8 solves the problem. O

39



THEOREM 128 (Hadamard factorization). Let f have order< a, with zeros {z; };._, excepting
possibly zero. Then for some polynomial g of degree< «,

::g@f‘”<1_£)eq, l(i)m .
kl:Il Lk 1§§§am Zk

COROLLARY 129. We have the product representation

(3.2.1) S(S—l)g(s):eBs H (]_£> eS/P,
&(p)=0

where p runs over the zeroes of &(s), which all occur in the critical strip.

PROOF. Applying the theorem gives this except the initial exponential is 55, s(s —1)& (s) —

s—1
Res;—1 & (s) = 1 so by the FE the function has the value 1 at 0, and ¢* = 1. O
3.2.3. Counting zeroes. Taking the logarithmic derivative of @ gives:
¢ 1T s. 1 1 1
322 2 = (2 -
(322 C(S) >T(5) 5l . —p o
It will be useful to recall the Stirling’s approximation for the dlgamma function:
def I (s) 1 -
]
) 2 = togs— 5+ 05 (1
valid in any cone |arg(s)| < @ — 0 (for proof see PS0).
LEMMA 130. Let p = B + iy run through the zeroes. Then as T — oo,
1
———— =0(logT).
§4+w—w2
PROOF. Setting s =2+ T in (3.2.2), we have F ($) = 0(log T) by Stirling’s formula, so
¢’ L
—R=(s) =0(logT) —
¢ ; —p p
Next, —%(s) =Y ,,>1A(n)n~* is uniformly bounded in any halfplane ¢ > 1+ ¢, so we get
ERZ ! +l =0(logT)
5 — p) s4):
Finally, 9?1 = |B|2 > 0 and EK 1 = |S2:pﬁ|2 >0 (0 < B < 1), so each term in the series is positive.
Speciﬁcally,
1 2— 1
9{ - ﬁ 2 Z 2
=P 2R+ (T -y A (T-7)
and the claim follows. 0

COROLLARY 131. N(T+1)—N(T —1) = O(logT), and Yly-T>1 ﬁ

= = O(logT).
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Next, let T be large and let—1 < ¢ < 2. Subtracting (3.2.2)) evaluated at s = ¢ +iT,2 +iT we

get
L) L
w0 0L (s

since £ (Z5L) — £ (25L) = O(1). Now for p with y ¢ (T —1,T + 1), we have

1 1 ‘ 2—0 3
s—p 2+4iT—p |~ [s—p[2+iT—p| ~ |y—T|

< 1. We have shown:

and for p with y € (¢ — 1,1+ 1) we have ‘2“;7’)‘ = l3|

LEMMA 132. Let s =0 +iT, o € [—1,2]. Then

&'(s) _
g(s) )3

ye(T—1,T+1

- +O0(logT).
)

COROLLARY 133. For each T > 2 there exists T' € [T,T + 1] such that for s = o +iT’, ¢ €
[—1,2] we have

&'(s)

&(s)

PROOF. There are O(logT) zeroes with v € [T, T + 1]. In particular, there is a gap of length
O(i5 gT) there, and we can choose T’ in the middle of the gap. Then |y —T'| > for all zeroes
of the zetafunction, so that

C/
e

= 0(log’T").

10gT

2 (o+iT")| <

< (N(T"+1) =N(T' — 1)) O(log T) + O(log T') = O(log* T") .

THEOREM 134. N(T) = Llog L — L + O(logT).

PROOF. Suppose T is not the ordinate of any zero, and let R be the rectangle [—1,2] x [T, T].
We need to calculate the real number

&)

2N(T) -2 = 27'Cl R E05)

Since &(5) = &(s) and by the functional equation &(1 —s) = &(s), it is enough to consider the
quarter-rectangle 2 — 2 +iT — J +iT. Recall that &(s) = 7~*/?I'($) {(s). The argument of
ns/2 changes exactly by —%Tlog 7. The argument of F(%) changes by ESlogF(‘l1 + %iT) =
Tlog (L) - T % +O(T~"). It remains to estimate the change S(T') in arg {(s). Since R(& (2 +

)) >1-Y, 2 > 0, the change of argument in [2,2+T] is at most 7. On [} +iT,2+iT|
Lemma-glves

*) ¥ (log(s—p))'+OflogT).
¢(s) ye(t—1,+1)
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Now the change of the argument of each s — p on the interval is at most Z, so the total change in
the argument of {(s) is O(logT). In summary, we have:

1 T T T T
2-2aN(T) = —1 — | —=1 ——4+0(logT).
{2AN(T) = Flog () - 3 g~ 3 + OllogT)

O

REMARK 135. Note that the “main” term came from the argument of I'g(s), the “error term”
from the argument of {(s), despite the zeroes being those of {(s). The reason is the functional
equation, which is symmetrical only for & (s). In the left half of the rectangular path, the argument
of §(s) will change considerably (note that (1 —s) # C(s)!).

The functional equation connects the zeroes p, 1 — p and hence zeroes with opposite imaginary
parts, showing that indeed R contains 2N (T') zeroes. The real-on-the real axis relation & (5) = &(s)
shows that the zeroes are symmetric about the critical line. In particular, a zero slightly off the line
must have a “partner” on the other side, and so a numerical countour integral argument can prove
that a suspected simple zero is exactly on the line rather than off it. Of course, a double zero would
be indistinguishable from two off-the-line zeroes, but no such double zero has ever been found,
and conjecturally they don’t exist.

REMARK 136. A more precise version of the Theorem is

T T T 7
= —log———+-+S(T)+0(T™ ).
2% 0r ~ g Ty SO
e This is easy to prove (just keep track of the constant term in the Stirling approximation
and of the contribution of the two poles).

e To see that this is significant note that (Littlewood)

/0 " S(1)dt = O(log T).
7

showing massive cancellation. It is clear that the term g is significant when averaging the
rest of the formula.

e This is important in numerical calculation of the zeroes: suppose we missed a zero be-
tween [0,7 — O(logT)]. Then fOTN(t) dr will be small by O(logT). But the RHS can be
calculated to that precision.

N(T)

Now let Ny(T') denote the number of zeroes %—i— i7, 0 <y <T. Hardy-Littlewood shows that

No(T) > T. This was improved:

No(T)

THEOREM 137. Let k¥ = liminf7_,. ﬁ K* similar for simple zeroes. Then:

(1) (Selberg 1942) k > 0.

(2) (Levinson 1974) k > 34.74%

(3) (Heath-Brown 1979) x* > 34.74%

(4) (Conrey 1989) x > 40.88%, k* > 40.13%

(5) (Bui—-Conrey—Young 2012) k¥ > 41.05%, k* > 40.58%
(6) (Feng 2012) k > 41.28%

THEOREM 138. (Zero density estimate)
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3.2.4. A smooth cutoff. Let n € CZ(R) be positive, supported in [—1, 1] and such that [ n =
1. For H > 0 set Ny (x) = Hn (Hlogx), and let ¢y = Nu + 1|p ;) (multiplicative convolution), a

smooth function on R%,. Then @y (s) = fe(s) 11 1)(s). The second integral is 150 that

Gr(s) = ~Tu(s).

3.2.5. The explicit formula.

LEMMA 139. For o < —1 we have C'(As) = O(log|s|).

PROOF. By the duplication formula,

C(1—s)=2"""7"cos (g) ()¢ (s)

and hence
'"(1— 1 T r !
LU _ L (1), T C0)
C—s) 2 2/ T(s) &)
Now if o > 2 the last term is O(1), the second term is O(log|s|) = O(log|1 —s|) and if 1 —s is
away from the trivial zeroes, then the first term is O(1) as well. O

PROPOSITION 140. Let U > 1 not be an even integer. Then

xlogx 5 xp x_z’” 1 &'(s) . ds
A(n)+0 =x—) fulp)— / N (s)x’—.
n;c (n)+0(—=) ; H( 5 PR o) H(s)

PROOF. In Section[3.1.2] we obtained the formula:

=0if n > xe!/# =x+ 0(%) and for

On the RHS we would like to shift the contour to the line (—U). For this, let 7 not be the
height of a zero and let Ry = [—U, 2| x [T, T]. By the Residuum Theorem,

1w R O v

i b (F2C) ol as = gu T oo~ gy~ X, ul2m
Thus

L dis) . _ =X ¢N(0) - ol §'(s) = oy s
_%/ N C(S) Qu(s)x’ds = x—yZ;’TTIH(P)F— Z(0) +2n;UnH(_ZM)W_%/(U) (s i (5)x°

+R1(T) +R2(U, T)
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where R (T') represents the integral over [—1,2] x {£T}, R,(U,T) the integral over [—U,—1] X
{£T} . Let T be on of the heights guaranteed by Corollary Then

Rty < [ flog'] {exp{%}ﬁ—;} 2] ds

—1+iT
2 log’T

2r7k
< xH exp{ﬁ} ThT

For the rest of the integration we use the bound ’%(s)‘ < log|s| of Lemma |139|to get

rw.n) < [ ogis e {1 I e

—U+i
U } UlogU +1logT

H*e —
< XP{H X |T|k+1

Now letting T — oo we see R|(T),R,(U,T) — 0. The superpolynomial decay of @(s) along
vertical lines shows that the vertical integrals converge to the intergrals alone (2), (—U) respec-
tively. U

REMARK 141. By the FE, —5{8) = log(2).

COROLLARY 142 (von Mangoldt’s explicit formula). Interpreting the sum over the zeroes
symmetrically, we have

oy X SO L2
Y A(n) = ;p Z00) 21g(1 ).

n<x

PROOF. We take H = U — oo in the proposition. The LHS is fine. The last term on the RHS

reads:
1 §'(s) - ds te U H* _H
- S — log|H +iT — dr
,/(U) () g ()x ; < /w og|H +iT |exp o \H+iT\k+1x

> logH +log|1 +iT
< xH/ og +0g|k+l a7
0 |1+iT|

< x HlogH.

We need to show:

H—o p T—)DOW|<T p
and
. —2m 12 X—Zm )
am Y An(=2m) =g X T = mylee (1)



x72m —

For the third claim, if 2m < H we have ﬁH(—Zm)x;lm ‘ <exp{ (%m) 5 < e% and we are

done by the bounded convergence theorem. 0

PROPOSITION 143. Let B(T) be such that if |y| < T then B < B(T). We then have

xlogx . xHlogT
H T
PROOF. In the previous proposition take U = 1. Then the U integral reads

/ +oo .
: /( : ° (S)ﬁH(S)xS% <<x"Hexp{ ! }/ —lOg’1+lt’dt
Y

lw(x) —x| < log? T -xPT) 4

2mi C(s) H ) o |1+i]
Since the zero density is about log? at height #, and since 7y (p) < 1, we can bound ¥ <7 Tl (P) ’;)—p
by xA(T) flT I()Tgt dt = log? T - xPmax- Similarly, Yiyst f]H(p)’;)—p is bounded by
> H logtdt HlogT
o [ Hlosts _ sittogT.
T t t T
O
THEOREM 144 (Prime Number Theorem). Suppose, further, that every zero have B <1 — 10;;7.
Then
|y (x) — x| < xexp {—c’\/logx} .
On RH we have
¥ (x) = x+ O(vxlogy).
PROOF. On RH we have
xlogx xHlogT
log®T
Vxlog” T + g T 7
can take H = \/x, T = x°. O

With zero-free region get bound

logx} xlogx xHlogT

xlongexp{—clogT I + T

and taking T = exp {cl(logx)l/z}, H = exp {c2v/logx} with ¢; > ¢ works.
3.2.5.1. Proof from Iwaniec—Kowalski. We have

Y amen (%) =5 [ (~50) e

Shift to the contour 1 — o . We pick up the pole, but not zeroes, and get

_ c
— log(Jt]+2)

xlogx = = _ ¢ ) —c/log(+2) 47

n<x
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3.2.6. The zero-free region.

LEMMA 145 (Hadamard / de la Vallée Poussin; argument due to Mertens). {(1+it) # 0 if
t #0.

PROOF. For s = 6 +it, 6 > 1 havelog{(s) =Y, ¥ _ym~pmo p=mit g0 that
RlogL(s) Z Z % cos (tlogp™) .

Using 2 (14 cos 9)2 =3+4cos0+cos20 > 0, get
3logl (o) +4Rlogl (o +it) +Rlog (o +2it) >0,
that is
()¢ (o +it)¢ (o +2it)| > 1.

Letting 6 — 1, suppose { (o +it) = 0. Then { (o + 2it) must be a pole, lest 3(s){* (s +it) ¢ (o +
2it) vanish there. O

THEOREM 146. If {(B+iy) =0then f <1— Tog7"

PROOF. The same identity shows

C ¢ : ?
C( ) — 4€Rc(c+zt) C(G—}—th) 0.
Now —%(G) < ﬁ +A (pole!), and we know
C' _ 1
C()<A10gt Zg{(s—p+p>

where each summand is positive. In particular, —EK%(G +2it) < Alogt. Setting t = v we have
s—p=0—[3s0

é; (o +iy) <Alogt —

o — 1
ﬁz =Alogt — ——.
s—p| c—

It follows that
3 4
— +4+3A+4Alogt — —— +Alogt > 0
G_1+ +4Alog G—ﬁ+ ogt >
SO

4 3
—<A1 o
y og)/—i— 1

Take 6 = 1+ z1¢. Then 55 < (14 2)Alogyso 1+ gies — B < (+ )Alogy 50

4 c1—¢) 1 |
1—p< |-
143 Alog}/ (c+3)Alogy —logy
if0<c<l. ]
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3.3. The Prime Number Theorem in Arithmetic Progressions

Follow same scheme, using Dirichlet L-functions
(1) AC, FE, BVS
2) ...
New features:

(1) The conductor g, and the analytic conductor q(s) = q- (|s+a| +3).
(2) The root number w.

3.3.1. Analytic continuation. From now until Section xxx we fix a primitive Dirichlet char-
acter ¥ mod g > 1. We have the Dirichlet series

L(six) =) x(nmn™"
n>1
convergent in R(s) > 0, absolutely in R(s) > 1. Define a € {0,1} by x(—1) = (—1)“.
For ¢ € S(R) of the same parity as x (¢(—x) = x(—1)p(x)) set
F(x:@ir) =Y x(m)o(rn).
nez
LEMMA 147 (Properties of F). (1) F(r)=F(x;@;r) decays rapidly as r — o.
(2) F(x: ) = SEF(2:03%).
(3) F(r) — 0 rapidly as r — 0.

PROOF. |F(r)| < ¥,20|@(rn)|. The second claim is Poisson sum (see PS2), and the third
follows from the second. O

DEFINITION 148. Let
i (dr
Z(x;cv;s)z/o F(x,o;r)r'—.

r

This converges absolutely for R(s) > 0. For R(s) > 1 we can change the order of summation
and integration and get:

Z(z:9:5) =2 Y 2(mn*$(s) = 2L(5: 2)$(s) .

n=1

We now break the integral in two:

o0 (dr V4 (dr
Z(x:0:s) = / F(x;w;r)r‘—+/ F(x:@:r)r'—
\/Z] r 0 r

— /MF()C,(p;r)rS——F—G(%)/\[F( ,A;l)rﬂ_lg
Vi qg Jo rq r
* GX) 1oy [ oy 1ogdr

= [ Fionr T+ T2 [ g
B - B

We have shown:

K s = sdr G s [ = A
q/zz(x;fp;S)zq/z/ F(x;cv;r)r—+ﬁq2/ F(X: @sr)r ——.
Va rVa Va



COROLLARY 149. Z(x; @;s) extends to an entire function.

Next, note that ’%‘ =1 and F(x;¢;r) = x(—1)F(x; @;r). Thus:

s s [ dr (=G s [ dr
T R B A
va r V4 va r
and applying G(x)G(%) = qx(~1) gives:
G(X) 1=, o .
SI27(w:@:5) = 2Z(x:0;1—s).
q""Z(x: ¢:5) 7 ¢ (Z:@:1—5)
COROLLARY 150 (Non-symmetric FE).
—sé(l_s) =
Lis;x)=G — L(l1—s:%).
(s:0) = G(X)q 50) (1—-s:%)

We now make a specific choice: @,(x)
a=1we have @, (k) = —i@,(k). Also, @,(s)
(—1)*@q(s). We conclude:

X%~ ™ For a = 0 we have ®a(k) = @q(k). For
Po(s+a) =T'r(s+a) is nowhere zero and ¢,(s) =

THEOREM 151. Let A(s; ) = ¢*/*Tr (s +a)L(s; ). Then A(s; ) extends to an entire function,
and satisfies the functional equation

Als;x) = wA(l =s5:7)

with the root number w = w(y) = W. Since ¢*/*T'r (s +a) is nowhere zero, L(s; ) extends

to an entire function. This has “trivial” zeroes at {a—2n|n > 1}.

Note that by the absolute convergence of the Euler product, L(s; ) hence A(s; ) has no zeroes
in R(s) > 1 hence in R(s) < 0.

3.3.2. The Hadamard product. In the right half-plane %R(s) > € we have L(s; ) bounded,
and ¢*/2,T'r(s + a) of order 1 (Stirling). Applying the FE we see that A(s; ) is of order 1, and
therefore has the expansion

As; ) = POT] (1 - %) .
p

Taking the logarithmic derivative, we find:

A e
—s5x)=Bx)+ +—1.
A (5:2) = B(x) ; P
Now RB(y) will contribute to the
A N _ 1
B = (0 =S >__B<x>—;{l_—_+5}

Thus



Finally, we note that

L'(s; 1 1T7(55 1 1
(3.3.1) — L((s;f)) :Elogq +§r((%2)) —B(x)—;{ +—} .

/(sta
and that 1 slog1 +1F((%)) ~ logq(s).

3.3.3. The zero-free region. Note that

L'(s; %) c—p
R = O(logq(s)) — -R = O(logq(s)) — :
L(s:2) Z ;|G—ﬁ\2+w—t\2
In particular, if o > 1 then for any single zero p,
L'(s;x) c-p
—R——"L- < O(logg(s)) —
L(s: %) lo—BI>+|y—1
From the Euler product we have for s = ¢ 4 it with o > 1 that
L’ (s; X A(n) .
=LAl =) = (x(n™)
n
Applying Mertens’s identlty again we get:
L/ L/ L/
(3.3.2) —3—(0,0) —4RL (o +it, ) —mz(c+2iz,xz) >0.

Note that o isn’t and x2 need not be primitive, and that we may have 2 = yo. We first note that
if v is a Dirichlet character mod ¢, yq its primitive counterpart then at o > 1 their logarithmic
derivatives differ by at most

l o
ZM <Y logp <logg.
l—p
plg plg
It follows that our estimate
L/
—%z(ﬁ v1) < (logqi(s))

also gives
!/

L 0
—EKz(s; yi) < EKS_—WI +O(logq(s)) -
Applying this in (3.3.2) gives with s = o +iY, for the zero p = B + iy gives:

o%)>0
s—1 o—B (7—1—211—1+ (£)=

with £ =1logq(y). Thus:

R C&.
o — c—1 cr+2it—1jL
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Case 1. If % is non-principal (“complex™), take 6 = 1 + % and get

0 4 1
1—
Ptg2iicy
SO
46 1 1
1— 6)—>—.
b=z (3+C6 )3>>$
Case 2. If % = xo, suppose y>$and0'—1+:; ThenEKGJrzlt =i ‘i| 1+4t2 _g% Then
4 3¢ %
<—+4+—=4CZ
B 5 55"
SO
4—-5C6 o
-2 9
P<1-{653c57

In other words, we have our zero-free region for y > &
Now suppose y is real. We need to study small zeroes. For this recall

(0:x) = O(logq) Z—

Now — LL/(G;)() > =Y, A(n)n~° = %(G) = —5—1 — O(1). Suppose two complex zeroes. Then

_L —0(1) < 0(logq) +M.

o-1 (c-B)+7

E—— T —
51— Ollogq)

8
5(c—B)

Same if two real zeroes.

and if 9 is small enough get B < 1 — logq

THEOREM 152. There exists C such that if 0 < 8 < C the only possible zero for L(s;x) with

ly| < @ and B>1-— @ is a single real zero, and this only if x is real. In any case all zeroes

with |y > 5 satlsfy 1-B8> logq( 7

REMARK 153. Note that if y is imprimitive, coming from primitive x; then L(s; x) and L(s; x1)
have same zeroes except for zeroes of Euler factors (1 — x(p)p~*) for p|g, and these are all on the
line R(s) = 0, and we still obtain the conclusion of the Theorem.

REMARK 154. (Landau) Let xi,x> be two quadratic characters. Then the Euler product
C(s)L(s; x1)L(s; x2)L(s; x1x2) has positive coefficients. From this can deduce that Siegel zeroes
are rare: at most one character mod g can have then, and the sequence of moduli supporting such
characters must satisfy g,11 > q,%.
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3.3.4. Counting zeroes. We return to the formula

L'(s;x)
‘ﬁL(”) O(logq(s)) — Z

c—p
o =Bl +ly—1

) .. B L(s:x) @ ) B '
Applying this with o = 2, where ‘ Tog) ‘ < ‘ 4 ‘, and using o — 8 > 1, we get:

(33.3) #{y||y—T| <1} = O(logqT)
and
1
(3.3.4) |y—§|’>l T O(logqT).
LEMMA 155. Let s = 6 +iT, ¢ € [—1,2]. Then
r 1
Z(S;X) = ye(Tzl’T+1) E + O(logqT).

PROOF. Subtracting (3.3.1)) evaluated at s = 6 +iT,2 +iT we get
L 1 1
T =om+ L (- ).
L S \s—p 2+iT—p
since £ (Z5L) — £ (25L) = O(1). Now for p with y ¢ (T — 1,7 + 1), we have
1 1 ‘ 2—o <3
s—p 24iT—p _|s—p||2—|—iT—p|_|y_T|2

O

and for p withye(t—l,t-l—l)wehave‘2+T p‘ < ﬁl

COROLLARY 156. For each T > 2 there exists T' € [T, T + 1] such that for s = o +iT’, 6 €
[—1,2] we have

/

T(s:2) = Ollog*qT").
PROOF. Same as Corollary [I33] O

DEFINITION 157. N, (T) counts zeroes of L(s; x) up to height 7',

THEOREM 158. Ny(T) = log— — L +0(logqT).

PROOF. Suppose T is not the ordinate of any zero, and let R be the rectangle [—1,2] x [T, T].
We need to calculate the real number

1 A

Since A(S; %) = A(s; %) and by the functional equation A(1 —s;%) = w(}¥)A(s; %), it is enough to
consider the quarter-rectangle 2 — 2-+iT — 1 +iT. Recall that A(s; ¥) = ¢*/> /2" (£52) L(s; %).
The argument of (q )s/ 2 changes exactly by 1 5T log - 4. The argument of T’ (”") changes by
Slogl' (M2 +1iT) = Tlog (%) — L — 2+ Z¢ 4 O(T ). It remains to estimate the change S(T')
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in arg {(s). Since R(L2+it;x)) > 1-Y, ., 2 > 0, the change of argument in [2,2+iT] is at
most 7. On [% +iT,2+iT] Lemma-glves.
L/
“sx= L (ogls—p)) +0lloggT).
ye(t—1,+41)

Now the change of the argument of each s — p on the interval is at most Z, so the total change in
the argument of {(s) is O(loggT). In summary, we have:

1 T T T T T
2ZZENX(T) = Elog (5> + Elogq— Elogﬂ— ) + O(logqT).

Now get

T qT\ T
T)=—1 — |- — logqT).
W) = 5o (51 ) = 51 + Ologar)
3.3.5. The explicit formula for L(s; x).

LEMMA 159. For 6 < —1 we have % (s; x) = O(loggls)).

PROOF. By the duplication formula,

L(1—s;0) =w(x)2! S n ¢~ 5cos(ﬂ<s_a)

)L

and hence

%(1 —s5;x) =logqg — %ntan (”(S;“)> + i((ss)) +Lz(s;5c)-

Now if o > 2 the last term is O(1), the third term is O(log|s|) = O(log|1 —s|) and if 1 — s is away
from the trivial zeroes, then the second term is O(1) as well. O

PROPOSITION 160. Let U > 1 not be an even integer. Then

X 200+ OC ) =~ Aw(p) g+ (1 —aogr+0(n) 5 [ G5,

g 271

where b()) is the zeroes order term in the Laurent expansion of—— (s3x) at s =0.

PROOF. More-or-less as before: we have

xl x n 1 L _ ds
Y £ A +OCED) = EaAmon () = 5 [ T 0m(s0e T

n<x

We now shift the contour to (—1), acquiring contributions from the poles of | L T(s:x ) These occur
at the zeroes of L(s; ) ) (which itself has no poles), accounting for the terms 77H (p) L andats=0.

p 9
To understand the contribution of s = 0 we go back to the logarithmic derivative (3.3.1). If a = 1
this is regular at s = 0 and b(y) = —%(0; %) (note that 7l (0) = 1). If a = 0, however, I'($) has

pole at s = 0, and so does its logarithmic derivative, at which point the integrand has a double pole.
In that case near s =0,

/ S

1 X 1
——(s:9) = — : — =41 .
i (s3%) ; +b(x)+0(s); = +logx+ O(s)
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Now,

—nH =% /+M exp }du—H/+wun )exp{ﬁ}du.
) =

In partiular, choosing since 1 symmetric we see that 7;,(0) = 0 so that 7z (s +0O(s?) and the
residue of the integrand is logx + b(). O

We need to estimate b().
LEMMA 161. We have

b(x) = O(logq) + Z —
1P

PROOF. Subtract (3.3.1) at s,2 and use —%(2;){) =0(1) and 3F (554) = =4+ 0(1) (O(1)

absolute) to get
L l—a 1 1
L=t o -x( ).

5 \s—p B 2—p
with the O(1) absolute. Now %%— ﬁ = ﬁ. In particular, S 2+ ﬁ’ < Yjy>1 # <
logg by (3:3:4). If [y] < I then ‘ﬁ = 0(1) 50 ¥yj<1 705 = O(logg) by B3:3.3). O

PROPOSITION 162. Let B(T) be such that if |y| < T then B < B(T), except possibly for the
single real zero By. We then have
xPo
Z}c n) <L y(x;x) <<_ﬁ_+{ ]/410gx+10g2qT-xB(T>—f—

n<x

xlogx xHlog(qT) Hlogg
H + T + X

PROOF. The integral in the last Proposition satisfies:
1 I . ods . 1 T log(g|1 +it|)
- —(s; — H — — = dt
2m‘/<1) L S0 ()35 < x eXp{H}/w M+ it]?

Since the zero density is about log g at height ¢, and since Al (p) < 1, we canbound ¥ <y <7 ﬁH(p)%p
by

xPT) /T logqt dr <A1 /qT 1O—gtdt < log?(qT)xPT) |
1 t 1 t

Similarly,

Z\y|>T ﬁH(p)’;—p‘ is bounded by

* Hlog(qgt)dt H1 T
x/_ glgt)dr  xHlog(qT)
T t t T

In summary so far, we have

xlogx xHlog(gT) Hlo
gx g )+ gq

1 xP
V()= Z (— - —) +(1—a)logx+0(logq)+ O(log* 4T KB 4 ).
<1 \P H T X
10gq is
real) fOf a single pair of zeroes B07 — Bo, where we have fy > 4 since can take ¢ small and g > 3.

Thus B; 1 O(1). The sum over % is O(log q)xP(T) 50 absorbed in the existing error terms. Also,

1—x'—Po

" = x%logx for0 < o < 1 —Bo < Z and we get the claim. O
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THEOREM 163. Forlogq < (logx)'/?

xBO

Y(xx) = —ﬁ—+0<xexp{ ¢'\/logx}).

On RH we have for g < x that
w(x;x) < vaxlog’x.
PROOF. On RH we have the bound
xlogx xHlog(qT) Hlogq
H * T * x

Take T = \/x, H = x. Then for x > ¢, the error term is
With zero-free region get bound

x'*logx+/xlog? qT +

logx } xlogx leoqu+Hlogq

log? 4T -
rogd exp{ Cloqu H T X

Taking T = exp {cl (logx)]/Z}, H =exp {c2 (logx)l/z} with ¢ > ¢, works if logg < C(logx)'/2.
Finally, we note that if ¥ is a (possibly non-primitive) character mod ¢, with primitive associate
x1 mod ¢g;. Then

v(x;x1) Z x(pP")logp < Zlogp Z 1 < logglogx,
m<x p|q pm<x
plq
pla
which can be absorbed in our error terms in either case. Thus we may apply the theorem for
non-primitive characters as well. ([l

3.3.6. The PNT in APs. Averaging Theorem (I63)) over the group of characters, we find:

3 ol LE@Y ) = o o

xZP’”Ea(q) =

—P
where on the RH the error is O(x'/?log?x) for ¢ < x, and —xéf%ﬁoo + O (xexp {—Cy/logx})

unconditionally, if log g < (logx)l/ 2,

C
PROOF. Using h(d) > 1 in the class number formula we get L(1;)) > ¢~ /2. Now for 1 —

o< exp{%}. Thus

10gq
d logn L logn )
< log“q.
Also, partial summation gives

i—’“@?g”«irw[13%"—1?5%?

1/210gq gq

} < q < logg.
gr1 I g+1
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It follows that L' (o; x) < logzq for B <o < 1. Then
g '? < L(lix) = L(1;2) — L(B:x) < (1 - B)logq.

O
THEOREM 165 (PNT I). For g < (logx)'~?® we have
Z logp = T +0 (xexp {—C logx}) .
x> p=alq) (q)
1 logx
PROOF. xPo—1 < exp {_q'/Zlogq}' U

COROLLARY 166. The first prime in an AP occurs before exp <q1+5>.

Note that RH predicts g2 and probably ¢'*? is enough.
THEOREM 167 (Siegel 1935). L(1;x) > C(€)g ¢ for some ineffective constant.

COROLLARY 168. Any exceptional zero has B < 1 — %i), and the error term holds for g <
(logx)4 for A arbitrarily large. The first prime in an AP occurs before exp (¢%).

3.3.7. Statement of Bombieri-Vinogradov.

DEFINITION 169. Let (x;q,a) = Y >n=q(g) A1)
We expect this to be about ﬁ + O0(y/xlog?x).

THEOREM 170 (Bombieri, Vinogradov 1965 [3, 11]]). Given A > 0 and for x1/2 (logx)_A <
o< x!'/2 we have

1

—- max max
Q q;Q (a7Q):l ysx

W) - 2| <t o)’

?(q)

CONJECTURE 171 (Elliott-Halberstam). Can take Q < x° for 6 < 1.

THEOREM 172 (Zhang 2013). Can take Q < x® for some 6 > % if restrict q to be sufficiently
smooth.
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CHAPTER 4
Topics

4.1. The circle method: Waring problem (31/3/2014)

(Based on [8, §20.2])
Let f(x) € Z[x] be an integer polynomial of degree k. Foraring Rset V;(R) = {x € R" | f(x) = 0}.
We’d like to estimate the size of V¢(Z) N[—X.X]", that is solve f(x) = 0 in a box.

THEOREM 173. Under appropriate hypotheses, we have
#VH(Z)NB =& 0 X" k.

1 k=0
. Accordingly we fix a nice

The idea is to detect =0 usi k)do =
e idea is to detect f(m) using [ /7 e(otk)dot {O k40

set Q C R”, set Qxy = X - Q and set

S(a)= ), e(af(m).

mezZn"NQy
Then

I
#(Vr(Z) N Q) :/o S(a)de.

In order to estimate S(), consider first the case of rational o = 2. Then e <§ f (m)) only
depends on m mod ¢, so that

)= L (51@) #reZ' N0y |x=u(q)} .

1 k=0
Now integrating over ¢ roughly corresponds to summing over a, + ¥ (q)€ (Qk) = (9)
q =AD" \q 0 else

shows show the singular series arises. More precisely, ¢ is not exactly rational.

LEMMA 174 (Dirichlet). Let P > 0, oo € R. Then there is 1 < g < P and a prime to q with

a 1
a4l < L
’oc q| — qP

PROOF. For each ¢ choose a such that ga —a € [0,1]. Then either for some g,a this num-
ber in [O, 1%} and we are done, or the P numbers ga — a are in the P — 1 intervals [1%,%],
1 <i< P—1. In the second case suppose g1 — aj,q>0 — ay are in the same interval. Then

(g1 —q2) @ — (a1 —a)| < § and we are again done. O
Fixing P, approximate every o by £ + B, |B| < q—IP. We divide in two cases
(1) “Major arcs™: g < Q;
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(2) “Minor arcs™: g > Q.

The “Major arcs” should contribute the mainterms. The “minor arcs” cover most of the circle R/Z
but are all error term.
Note that if £ 7é 7 ; then

g 7 qi Thus if O < < , the major arcs are the disjoint
union 9t of the arcs M(a,q) = [g — 4P g + qP] . The “minor arcs” are the complement.

For o of the form Z—Il + B we have

s@) = Ye(%w) ¥ elbson)

u(q) meZ'"NQx
m=u(q)
—n a n
= gq Ze(—f(z)) Y eBf(m)g
ulg) N mGZ"ﬂ(Q)X
m=u(q

Now note that the inner sum is a Riemann sum for the integral

| eBr)d

with the domain discretized into cubes of size [0,g]". Now f is small, so the integrand is roughly
constant and the the Rieman well-approximates the integral. Specifically,

%) 2 0f
¢ (B (x) = 2miB - (x)e (B ()

1

of

has size roughly BX*~! since 5 is a polynomial of degree k. We have f§ < ql, so if P ~ XK1

then the derivative is of order %{ and f is roughly constant on the cube. We get

a
~q Y e (—f@) e (Bf(x))d"x
u(q) q /QX
It follows that

fyS@as= Lo L Le(Gw) [ Tap [, eriorar

q<Q u(q) 1/aP

Now one shows that the f integral can be extended to all of R, and using the continuous version of
our delta function we see that

/Rdﬁ Qxe(ﬁf()_c))d”x = limzivol{xeﬁxz|f()_c)|§€}

e—0 LE

Q

Sw(f)X"F

under appropriate hypotheses.
Turning to the exponential sum, one extends it over all g (it converges) and shows that this is

the singular series. and summing gives
=Y c(g)=]]8:(p)
q p
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One the minor arcs one directly estimates the exponential sum to get some cancellation. That’s
the hard part.

4.2. The circle method: Ternary Golbach (2/4/2014)

We’d like to estimate
r3 (N) = Z HA n,
ni+ny+n3=Ni=
THEOREM 175 (Vinogradov 1937 [12]]). We have

r(N) = %G(N)NZ + 0, <N2 (1ogN)*A) ,

with the singular series

S(N) = <p|I]TV (1—@)) (,I,ii (1+ﬁ)) :

COROLLARY 176. Every sufficiently large odd number is a sum of three primes.

PROOF. In that case &(N) > 1 and so r(N) > N2. Prime powers contribute O(N>/?log? N).
U

REMARK 177. Note that if N is even, S(N) = 0.
Set S(at) =Y, A(n)e(nct)@ (2). Then

/R/Zsm)%(—zva)da: y HAn, (%)

ny+ny+n3=Ni=
The key idea is to divide the region integration into major arcs: those o which are close to rational
numbers g with small denominator, and minor arcs: the remainder. When « is close to rational,

S(a) is a sum over primes in AP and can be estimated very accurately. When « is far from rational,
we hope to make a crude estimate, still approximating o by a rational.

REMARK 178. On ERH, can have major arcs cover the whole circle (Hardy-Littlewood, 1922).

4.2.1. Major arcs I. Fix Q, § to be chosen later. For (a,q) = 1 let M(a,q) = [g -9, g + 5] C

R/Z and set
M = |_| |_| M(a,q).
q<0 (a,q)=1
Note that we are working in R /Z so the inner union is over the multiplicative group. For g # ¢/

al

_dls L5 1
5 7 2 od > Yo (and for g = ¢’ we have q
as long as 28 < - o

We can make a crude approximation, but a cleaner argument is as follows: for n prime to ¢, the

we have > Q

é) so these sets are disjoint

function e (%) on (Z/qZ)™ has multiplciative Fourier coefficients

(1) sty o (2) -
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and hence if (na,q) = 1 we have

na 1 _
e (—) = g(g) L Ca).

q

Now let @ = Z—Il + B with (a,q) = 1. Then most prime powers n are prime to ¢, and for them we
have:

1 _
Y Ametna)o (1) = o5 ¥ 602 @ LAMxmenBo (%)
(n,q)=1 Plq x(q) n
If (n,q) > 1 and A(n) # 0 then n is a power of some prime divisor of ¢, so the remainder is at

most

o)

plg k=1
Now for k < logx we have |@ (x~!p*)| = O(1) and for large k we have ¢ (%k) < - so that

S —-1 k g
olx Pk +0(1)
L ( )\ :
and
Zlogp Z ‘(p (x p >’ < Z (logx+logp) < logxlogg.
plg pla
Thus
S(a) = Z ) Y Ay +Y Aln) z
) 10 Y ( ) i ( )
1
= — G(x A(n — )+ 0O (logxl .
D X% @ LA B)9 (%) +0(1ogxlogQ)

4.2.2. Primes in AP. Set
Fg(y) = e(By)o(v), Gp(s) = Fy(s).

Now for reasonable ¢ (vanishing to second order at y = 0, say),

Resi— G (s) = F(0) = 9(0) =0

[} d {o%s}
0):/0 Fﬁ(y)%<</0 @dyzO(l).

Also, Gg(1) = [y Fg(y)dy = ¢(—B).
For x primitive we have the explicit formula:

and

LA () =l 0BT Gpo1 (1605 [ (= 0:2)) Gy

n
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We compute the last integral using CS. Since £ (s; %) < log(q]s|),

/+°° L 1 i 1
JE— —_— l J—
e | L 2 s

while since sGg,(s) is the Mellin transform of —yFl;x (y), we have by Plancherel

1 [t 1 2 o 2 dy
1 L dr = F! —1/2)_
271:/_00 sGﬁx( 2+ll> t /0 ()Y y
R N
= / Fﬁx()’)‘ y “dy
0
< 14|B]x.

We now execute the sum over the zeroes. With Hardy-Littlewood we set ¢(t) = t?exp(—t) so
that

5 N\ 1/2
dt) < 1+logg

I'(s+2)
(1—2miBx)"*

Gﬁx(s) =

In particular,
I'(s+2 _z
|Gﬁx(s)‘: ’ ( )’ - 1<<€ 2|t|.
(1+4m2B2x2)°/ %"

The sum over the zeroes with height at least 7" is then O

4.2.3. Minor arcs. We need to estimate
n

Y A(n)e(an)g (-) .
) X
By Dirichlet’s approximation theorem, we have
a —_
q

for some ¢ < 8~!. We may also assume ¢ > Q since otherwise we’re in a major arc. We are
reduced to estimating

’ a

0
< —
q

LAz meBn)o ()

and this can be done.
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CHAPTER 5

Extra Stuff

5.1. The Large Sieve Inequality and Bombieri—Vingoradov

5.1.1. Proof of the inequality. Source: [5, §27]; for further discussion see [8, §§7.3-7.5].
Quite often would like to bound sums of the form ¥, [¥,, a(n)e(&n)|* < AY,, |la(n)]?. Note first
that Cauchy—Schwartz gives

¥ |Eatre(&n) " Y (Zla?) (L@ ) =Rl

We would like to exp101t the cancellation in the inner sum to get better bounds. Opening the
parentheses, we can write the LHS as

Y a(mja(m) L e (& (n—m) =RY la(w) + ¥ alw)alm) Le(&ln—m)
n,m r n#m r
We hope that by orthogonality the second term is small. In particular, we cannot really hope for

A<R.
Secondly, the norm of a matrix is equal to the norm of its transpose. Thus the same A holds for

2
¥ |Zb0)e(&n)

2
< A|bf3 -
For the same reason as before, we can’t really hope for A < N. So try to prove the bound with
A ~ R+ N (recall that A = RN is trivial).

DEFINITION 179. Say that {&}*_| € R/Zis 8-spaced if this is so in the quotient metric from
R.

THEOREM 180 (Selberg; Montgomery—Vaughan). Let {5,}521 C R/Z be 6-spaced. Then for
any {a(r)}*_, and any N, M,

R 2

(5.1.1) )

r=1
whereA<N—1+6"1.

la(m)|?,
M<n<N+M

Y, a(me(&mn)

M<n<N+M

This is best possible. We give an argument due to Gallagher [7] giving the weaker bound
A < 271N+ 6~!, which is good enough for most applications.

LEMMA 181 (Sobolev embedding). Let F be continuously differentiable on [x — h,x + h]. Then

1 x+h x+h ,
F) <5 |F(t)\dt+/ IF ()] dr.
x— x—h
1
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PROOF. Since F is continuous, there is y € [x — h,x+ h] where F attains its average value there.
Then |F(y)| is at most the average of |F| and |F(x) — F(y)| is at most the variation of F. O

PROOF OF THEOREM [180] Since the LHS of (5.1.1)) is independent of M (up to translating a),
we may assume the sum ranges over |n| < 5. Let f(x) = Ynj<n/2a(n)e(nx) and F(x) = 1f ()]

Choose representatives so that §; < & < --- < &, < &1+ 1— 4. Then the intervals (ér - g, &+ g)
are disjoint in R /Z. It follows that

&+6/ &+6/
yre) < X(5 [0 wos [ o)

- - —5/2 &5/
1t 2 ! /
< 5 [ roPas2 [ 1wl o).

Applying Parseval on R /Z we see that fol |f(0)|*dr =¥, |a(n)|* and fol 1/ (1)|*dr = 47522|n|§N/2 n?la(n)| <
n>N? Yinj<n/2 la(n) 2. The claim now follows from Cauchy—Schwartz. O

5.1.2. Application: Bombieri—-Vinogradov (ERH on average). Given g and a prime to g set

y(xq,a)= Y A(n)

n<x

n=a(q)
E(xia,q) = W(x:q,a) — —
®(q)
E(x;q) = max |E(x;q,a)|

(avq):

E*(x,q) = max [E(y;q)|
y<x
THEOREM 182 (Bombieri—Vinogradov). Fix A > 0. Suppose x'/% (logx) ™ < Q < x'/2. Then

1
— Y E*(x.q) < x"?1og’x.
QqSQ

Note that y(y;q,a) < <%1 + 1) logy < cl]xlogx s0 Y <pE*(x,q) < xlongqgQé < xlog?x.

On the other hand, note that this states that for most g < Q, E*(x;q) < x1/2 log® x, that is that the
ERH holds most of the time.
5.1.2.1. Reduction 1: Dirichlet characteres. Recall that

1 Y .
v(yig,a) = W%)x(a)w(y,x)

with
w(vix) =Y, x(n)A(n).
n<y
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We then have
E(vig,a)] = —|Y 2(a) (Wi 2) — Syx0))
<

Noting that the RHS is independent of a, we have
1
E(iq)l < —— ¥ [w(s0) = Sppy] -
¢(q) x(q

Let )’ be primitive mod ¢’ and induce y. Then

) —vx)| = |'Y (ogp)x' ()

Setting
¥/ N S, pa
E"(xx) = max |y (y;x') 5%,161,
and using ®(q) <logg < logx we get

E'(xiq) < —— Z “(5x') +log’x.
¢(9) ;7

We now executve the sum over g, by considering the contribution of each primitive character.

/
1 2
;E xquz Z(p(qr)—i—Zlogx
q<Q 7<0x(q) rqu, q<Q
isi 1 1 1
The last term is in the error range. Also, }° < % (a7 < o) Y, < % G and

1 1 1
Lo = Ellmgn T S ,,gz(”p—ﬁp(p—l)*'“)




5.2. The circle method: the Partition Function

LEMMA 183 (Dirichlet). Given o € R, P > 0 there are a,q relatively prime with 1 < g < P

_al <« 1
and ‘OC | < ap

PROOF. Consider the set of integers {ga—a |1 <g<P,0<a<gq}. This is a set of size
_P(P2+1) , so it has two distinct members with distance 0
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