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Introduction (Lecture 1, 4/1/2016)

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

• Problem sets will be posted on the course website.
– To the extent I have time, solutions may be posted on Connect.
– I will do my best to mark regularly.

• Textbooks
– Davenport [5]
– Montgomery–Vaughn [9]
– Iwaniec–Kowalski [8]

0.2. Course plan (subject to revision)

• Elementary counting (“change the order of summation”)
• Exponential sums
• Counting primes, primes in arithmetic progressions
• Other topics if time permits.

0.3. Introduction

DEFINITION 1 (Caricature). Number Theory tries to find integer solutions to polynomial equa-
tions.

• Algebraic Number Theory: study individual solutions.
– Solve x2+y2 = p, and x2+y2 = n using prime factorization in the Gaussian integers.
– Solve x3 + y3 = z3 using prime factorization in the Eisenstein integers.
– Solve ap +bp = cp using the Frey curve y2 = x(x−ap)(x−bp).

• Analytic Number Theory: count the solutions.
– (Gauss circle) What is the average number of ways to represent an integer at most x

as a sum of two squares?
– (Roth) Let A be a dense subset of [n]. Then A must have many solutions to x+z = 2y.
– Primes

∗ (Mertens) ∑p≤x
1
p = log logx+C+O( 1

logx).
∗ (Gauss; Riemann+dvP/Hadamard) ∑p≤x log p= x+O

(
xexp

{
−
√

logx
})

, hence
∑p≤x 1∼ x

logx .
∗ (Twin primes conj) ∑p≤x,p+2 prime 1∼ 2C2

x
log2 x
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– (Vinogradov 1937 [12]) Let n be large enough and odd. Then the equation p1+ p2+

p3 = n has about n2

log3 n
solutions.

– (Green) Let A be a dense subset of the primes. Then A must have many solutions to
x+ z = 2y.

THEOREM 2 (Helfgott 2013). For all odd N > 1028 there is x for which

∑
n1+n2+n3=N

3

∏
i=1

Λ(ni)ηi

(ni

x

)
> 0 ,

where ηi are appropriate (positive) smooth functions.

COROLLARY 3. (Adding numerics of Helfgott–Platt) Every odd integer N > 5 is the sum of
three primes.

THEOREM 4 (Zhang 2013 [13]). There is a weight function ν(n)> 0, a finite setH of positive
integers such that for all large enough x

∑
x≤n≤2x

n≡b(W (x))

(
∑

h∈H
θ (n+h)− log3x

)
ν(n)> 0 ,

where θ(n) =

{
logn n prime
0 otherwise

, W (x) is some slowly growing function of x and b is chosen

appropriately.

COROLLARY 5. For every x large enough there is x≤ n≤ 2x and distinct h1,h2 ∈H such that
n+ h1,n+ h2 are prime. In particular, there are arbitrarily large pairs of prime numbers whose
difference is at most maxH−minH.

REMARK 6. Zhang obtained the bound 7 · 107 for the gap maxH−minH. Further work by
Polymath8, Motohashi–Pintz and Maynard has reduced the gap to 246.

5



CHAPTER 1

Elementary counting

1.1. Basic tools

1.1.1. Stirling’s formula (PS0).

1.1.2. Abel Summation (PS0).

1.1.3. Arithmetic functions (PS0) (Lecture 2; 8/6/2016).

DEFINITION 7. An arithmetic function is a function f : Z>0→ C.

EXAMPLE 8. δ (n) =

{
1 n = 1
0 n > 1

, I(n) = 1; N(n) = n. The divisor function τ(n) = ∑d|n 1 and

sum-of-divisors function σ(n) = ∑d|n d. The Euler totient φ(n) = #(Z/nZ)×. For n = ∏
r
i=1 pei

i
set ω(n) = r, Ω(n) = ∑

r
i=1 ei (so ω is additive, Ω completely additive), Möbius function µ(n) ={

(−1)ω(n) n squarefree
0 n squarefull

, Liouville function λ (n) = (−1)Ω(n).

DEFINITION 9. The Dirichlet convolution (or multiplicative convolution) of f ,g is the function

( f ∗g)(n) = ∑
de=n

f (d)g(e) .

EXAMPLE 10. τ = I ∗ I, σ = I ∗N, I ∗µ = δ , I ∗φ = N.

LEMMA 11. The set of arithmetic functions with pointwise addition and Dirichlet convolution
forms a commutative ring with identity δ . f is invertible iff f (1) is invertible in C (note f 7→ f (1)
is ring hom to C).

COROLLARY 12 (Möbius inversion formula). If F = G∗ I then G = F ∗µ .

The Chinese Remainder Theorem says: if (m,n) = 1 then (Z/mZ)× (Z/nZ) ' (Z/nmZ) as
rings. This forces some relations. For example, φ(nm) = φ(n)φ(m), τ(nm) = τ(n)τ(m), σ(nm) =
σ(n)σ(m).

DEFINITION 13. Call f multiplicative if f (nm) = f (n) f (m) if (n,m) = 1, completely multi-
plicative if f (nm) = f (n) f (m) for all n,m.

LEMMA 14. If f ,g are multiplicative so is f ∗g. If f (1) 6= 0 then f is multiplicative iff f−1 is.

EXAMPLE 15. I,N hence τ,σ ,µ,λ .

Multiplicative f are determined by values at prime powers.
• To an arithmetic function associate the (formal) Dirichlet series D f (s) = ∑n≥1 f (n)n−s.
• Multiplication given by Dirichlet convolution – isomorphism of rings.
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EXAMPLE 16. ζ (s)=∑
∞
n=1 n−s =∏p (1− p−s)

−1. Then ζ (s)−1 =∏p(1− p−s)=∑n µ(n)n−s,
new proof of Möbius inversion.

THEOREM 17 (Folklore). There are infinitely many primes.

EULER’S PROOF. Euler product converges for ℜ(s) > 1, locally uniformly, so actually get
identity of functions. By MCT lims→1+ ζ (s) = ∑

∞
n=1

1
n = ∞ so infinitely many primes. �

EXAMPLE 18. Formal differentiation gives −ζ ′(s) = ∑n≥1 L(n)n−s with L(n) = logn. Mul-
tiplication by L (or any additive function) is a derivation in the ring. Formally differentiating the
Euler product also gives

−ζ ′(s)
ζ (s)

= ∑
n≥1

Λ(n)n−s

where

Λ(n) =

{
log p n = pk

0 otherwise

is the von Mangoldt function. Note the identity above: ζ (s)∑n≥1 Λ(n)n−s =−ζ ′(s), that is

I ∗Λ = L .

1.2. Averages of arithmetic functions (Lecture 3, 8/1/2016)

• Goal: how big f (n) is “on average”.

1.2.1. Idea: convolutions are smoothing. Suppose f = g∗h. Then

∑
n≤x

f (n) = ∑
n≤x

∑
d|n

g(d)h(
n
d
)

= ∑
d≤x

g(d) ∑
m≤ x

d

h(m) .

Now if h is “smooth” then ∑m≤ x
d

h(m) may be nice enough to evaluate.

EXAMPLE 19 (Elementary calculations). (1) The divisor function

∑
n≤x

τ(n) = ∑
d≤x

∑
m≤ x

d

1

= ∑
d≤x

[ x
d

]
= ∑

d≤x

( x
d
+O(1)

)
= x ∑

d≤x

1
d
+O(x)

= x logx+O(x) .

Thus
1
x ∑

n≤x
τ(n) = logx+O(1) .
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(2) The totient function.

∑
n≤x

φ(n) = ∑
n≤x

∑
d|n

µ(d)
n
d
= ∑

d≤x
µ(d) ∑

d|n≤x

n
d

= ∑
d≤x

µ(d) ∑
m≤ x

d

m = ∑
d≤x

µ(d)
(

x2

2d2 +O(
x
d
)

)

= x2
∑
d≤x

µ(d)
d2 +O

(
x ∑

d≤x

1
d

)

= x2
(

ζ
−1(2)−O(

1
x
)

)
+O(x logx)

=
x2

ζ (2)
+O(x logx) .

Thus
1
x ∑

n≤x
φ(n) =

x
ζ (2)

+O(logx) .

(3) The normalized totient function

1.2.2. The Gauss Circle Problem.

DEFINITION 20. Let rk(n) = #
{

a ∈ Zk | ∑k
i=1 a2

i = n
}

be the numebr of representations of n
as a sum of k squares.

Then ∑n≤x rk(n) = #
(
Zk∩BRk(

√
x)
)
. Now tile the plane with units cubes centered at the lattice

points of Zk and let d be the diameter of the unit cube. Then

BRk
(√

x−d
)
⊂

⋃
a∈Zk∩BRk (

√
x)

(
a+
[
−1

2
,
1
2

]k
)
⊂ BRk

(√
x+d

)
.

Now let γk be the volume of the unit ball in k dimensions. Then vol(BRk(
√

x+O(1))) =

γk (
√

x+O(1))k
= γkx

k
2 +O

(
x

k−1
2

)
.

COROLLARY 21 (Gauss). We have

#
(
Zk∩BRk(

√
x)
)
= γkx

k
2 +O

(
x

k−1
2

)
.

Note that the error term has a natural interpretation as the volume of the sphere.

Consider first the case k = 2, where the size of the error term is known as the Gauss Circle
Problem.

THEOREM 22 (Hardy 1915). Write #
(
Z2∩BR2(

√
x)
)
= πx+E(x). Then E(x)� x1/4 log1/4 x

infinitely often.

CONJECTURE 23 (Hardy). E(x)�ε x
1
4+ε .

We may later give Voronoi’s bound E(x)�ε x
1
3+ε (see section XX). The world record is

THEOREM 24 (Huxley 2003). E(x)�ε x
131
416+ε .
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REMARK 25. This actually applies to counting in the dilates of a convex set whose boundary
has curvature bounded below.

When k ≥ 4 the situation is easier, because r4(n) is a nicer function.

THEOREM 26 (Jacobi).

r4(n) = 8(2+(−1)n) ∑
d|n

d odd

d .

COROLLARY 27. ∑n≤x r4(n) = π2

2 x2 +O(x logx).

PROOF. By the usual method

∑
n≤x

r4(n) = ∑
n=md≤x

d odd

8(2+(−1)n)d

= 8 ∑
m≤x

(2+(−1)m) ∑
d≤ x

m
d odd

d

= 8 ∑
m≤x

(2+(−1)m)

(
1
2
· 1

2
·
( x

m

)2
+O

( x
m

))

= 2x2
∑

m≤x

2+(−1)m

m2 +O

(
x ∑

m≤x

1
m

)

= 2x2
(

ζ (2)+
1
2

ζ (2)
)
+O(x logx)

= 3ζ (2)x2 +O(x logx)

=
π2

2
x2 +O(x logx) .

�

Note that Gauss’s argument would have given the error term O(x3/2).

EXERCISE 28. Improve for k ≥ 5 the error term to O(x
k
2−1) using the result for k = 4.

1.2.3. Dirichlet hyperbola method (“divisor switching”) (Lecture 4, 11/1/2016). The cal-
culatution above of the average of τ(n) is inefficient, since the estimate

[ x
d

]
= x

d +O(1) is bad for
large d. We observe with Dirichlet, however, that every n≤ x has a divisor smaller than

√
x. Thus

∑
n≤x

τ(n) = 2 ∑
d≤
√

x

[ x
d

]
−
[√

x
]2
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(error coming from cases where both divisors are ≤ x, including square n). Thus

∑
n≤x

τ(n) = 2 ∑
d≤
√

x

x
d
− x+O(

√
x)

= 2x ∑
d≤
√

x

1
d
− x+O(

√
x)

= x
(

2log
√

x+2γ +O
(

1√
x

)
−1
)
+O(

√
x)

= x logx+(2γ−1)x+O(
√

x) .

We conlcude that
1
x ∑

n≤x
τ(n) = logx+(2γ−1)+O(x−1/2) .

EXERCISE 29. Prove by the hyperbola method that 1
x ∑n≤x τk(n) =Pk(logx)+O

(
x1− 1

k

)
where

Pk is a polynomial of degree k.

EXERCISE 30. Let k ≥ 4. Writing rk(n) = ∑x1,...,xk−4
r4
(
n−∑

k
i=1 x2

k

)
and changing the order

of summation, show that

∑
n≤x

rk(n) =
(πx)k/2

Γ
( k

2 +1
) +O

(
x

k
2−1 logx

)
Note that the same formula with error term O

(
x

k−1
2

)
follows from a volume argument as in the

circle method.

1.3. Elementary prime estimates

1.3.1. Cramer’s model. Let A ⊂ [2,x] be chosen as follows: each 2 ≤ n ≤ x independently
declares itself “prime” with probability 1

logn . Then

E |A|= ∑
n≤x

1
logn

≈
∫ x

2

dt
log t

.

DEFINITION 31. Li(x) =
∫ x

2
dt

log t .

CONJECTURE 32 (Gauss). π(x)
def
= |P∩ [0,x]| ∼ Li(x)∼ x

logx .

Similarly we find

(1.3.1) E ∑
n∈A

logn = ∑
n≤x

1≈ x .

(1.3.2) E ∑
n∈A

1
n
= ∑

n≤x

1
n logn

≈
∫ x

2

dt
t log t

= log logx+O(1) .

(1.3.3) E ∑
n≤x

A(n)A(n+2)≈ ∑
n≤x

1
log2 n

≈
∫ x

2

dt
log2 t

∼ x
log2 x

.
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While these look similar, for the true set of primes (1.3.2) is easy (we are about to prove it),
(1.3.1) is hard (one of the highlights of the course) and (1.3.3) is open:

CONJECTURE 33 (Hardy–Littlewood twin primes conjecture). ∑n≤x P(n)P(n+2)∼ 2C2
∫ x

2
dt

log2 t

where C2 = ∏p
p(p−2)
(p−1)2 .

REMARK 34. Numerical estimates show our model to be somewhat off. The reason is that
primality is not independent. For example, if n is prime then n+1 is not. A better model is to fix a
small parameter z (say z ≈C log logx), take the primes up to z as known, and exclude from A any
n divisible by a small prime.

CONJECTURE 35 (Generalized Hardy–Littlewood). See Green–Tao.

1.3.2. Chebychev’s estimate.
• Idea: dyadic decomposition

Let n < p ≤ 2n. Then p‖
(2n

n

)
since p divides (2n)! once and n! not at all. Given x set n =

⌊ x
2

⌋
.

Then

∑
x
2<p≤x

log p ≤ ∑
n<p≤2n

log p+ logx

≤ log
(

2n
n

)
+ logx≤ log(4n)+ logx

≤ x log2+ logx .

Setting θ(x) = ∑p≤x log p we find

θ(x)≤ θ

(x
2

)
+ x log2+ logx

so

θ(x) ≤ x log2
log2 x

∑
j=0

1
2 j +

log2 x

∑
j=0

logx

≤ (2log2)x+ log2 x
= O(x) .

• Idea: there are very few prime powers

Now set ψ(x) = ∑n≤x Λ(n). Then ψ(x) = θ(x)+ θ(x1/2)+ θ(x1/3)+ · · · = O(x+ x1/2 + x1/3 +
· · ·) = O(x) as well.

REMARK 36. Can also get a lower bound θ(x) ≥ cx from this method, by noting that primes
2
3n < p < n don’t divide

(2n
n

)
at all, and bounding the number of times primes

√
n < p < 2

3n can
divide. Note that

(2n
n

)
≥ 4n

2n+1 since it’s the largest of 2n+1 summands.

1.3.3. Mertens’s formula (Lecture 4, continued). Note that

∑
d|n

Λ(d) = ∑
p j|n

log p = ∑
pe‖n

e log p = log

(
∏
pe‖n

pe

)
= logn .
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Thus

∑
n≤x

logn = ∑
n≤x

∑
d|n

Λ(d) = ∑
d≤x

Λ(d) ∑
d|n≤x

1

= ∑
d≤x

Λ(d)
( x

d
+O(1)

)
= x ∑

d≤x

Λ(d)
d

+O

(
∑
d≤x

Λ(d)

)
.

Now ∑d≤x Λ(d) = ψ(d) = O(x) and

∑
n≤x

logn =
∫ x

1
log t dt +O(logx)

= x logx− x+O(logx) .

Dividing by x we thus find

∑
d≤x

Λ(d)
d

= logx+O(1) .

Using the principle of “very few prime powers” it also follows that

∑
p≤x

log p
p

= logx+O(1) .

We are now ready to prove

THEOREM 37 (Mertens). There is a constant C such that ∑p≤x
1
p = log logx+C+O( 1

logx).
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PROOF. Let Sn = ∑p≤n
log p

p . Then

∑
p≤x

1
p

= ∑
n≤x

1
logn

(Sn−Sn−1)

= ∑
n≤x

Sn

(
1

logn
− 1

log(n+1)

)
+C+O(

1
logx

)

= ∑
n≤x

(
1− logn

log(n+1)

)
+O

(
∑
n≤x

1
logn

− 1
log(n+1)

)
+C+O(

1
logx

)

= ∑
n≤x

log(n+1)− logn
log(n+1)

+C+O(
1

logx
)

= ∑
n≤x

1
n +O( 1

n2 )

log(n+1)
+C+O(

1
logx

)

= ∑
n≤x

1
n logn

+C+O(
1

logx
)

=
∫ x

2

dt
t log t

+C+O(
1

logx
)

= log logx+C+O(
1

logx
) .

�

REMARK 38. Can express as a Riemann–Stieltjes integral and integrate by parts instead.

1.3.4. The number of prime divisors (Lecture 5, 13/1/2016).

∑
n≤x

ω(n) = ∑
n≤x

∑
p|n

1

= ∑
p≤x

[
x
p

]
= ∑

p≤x

(
x
p
+O(1)

)
= x ∑

p≤x

1
p
+O(π(x))

= x log logx+Cx+O(
1

logx
) .

Thus

1
x ∑

n≤x
ω(n) = log logx+C+O(

1
logx

) .
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We now compute the standard deviation
1
x ∑

n≤x
(ω(n)− log logx)2 =

1
x ∑

n≤x
(ω(n))2− 2

x ∑
n≤x

ω(n) log logx+(log logx)2

=
1
x ∑

p1,p2≤x
∑

p1,p2|n≤x
1−2loglogx(log logx+O(1))+(log logx)2

=
1
x

(
∑
p≤x

[
x
p

]
+ ∑

p1 6=p2≤x

[
x

p1 p2

]
−∑

p≤x

[
x
p2

])
− (log logx)2 +O(log logx) .

≤ ∑
p≤x

1
p
+

(
∑
p≤x

1
p

)2

− (log logx)2 +O(log logx)

= log logx+C+O(
1

logx
)+(log logx)2 +2C log logx+C2 +O

(
log logx

logx

)
− (log logx)2 +O(log logx)

= O(log logx) .

(Theorem of Turan–Kubilius).

COROLLARY 39 (Hardy–Ramanujan). Most n≤ x have about log logn prime divisors.

PROOF. By the triangle inequality in `2,(
1
x ∑

n≤x
(ω(n)− log logn)2

)1/2

≤

(
1
x ∑

n≤x
(ω(n)− log logx)2

)1/2

+

(
1
x ∑

n≤x
(log logx− log logn)2

)1/2

.

Now for n≥
√

x, logn≥ 1
2 logx and loglogn≥ log logx−log2. It follows that 1

x ∑n≤x (log logx− log logn)2≤
O(1)+ (log logx)2

√
x = O(1) and, squaring, that

1
x ∑

n≤x
(ω(n)− log logn)2 = O(log logx)

as well. Now if |ω(n)− log logn| ≥ (log logn)3/2 �

THEOREM 40 (Erdős–Kac). Fix a,b. Then
1
x

#
{

n≤ x | a≤ ω(n)− log logx√
log logx

≤ b
}
−−−→
x→∞

1
2π

∫ b

a
e−t2/2 dt
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CHAPTER 2

Fourier analysis

NOTATION 41. For z ∈ C set e(z) = exp(2πiz).

2.1. The Fourier transform on Z/NZ

2.1.1. Basics.

DEFINITION 42. For f : Z/NZ→ C set Ex f (x) = 1
N ∑x mod N f (x). Set eN(x) = e

( x
N

)
. Set

ψk(x) = eN(kx). Note that N is implicit and that kx is well-defined mod N.

LEMMA 43. {ψk}k∈Z/NZ is a complete orthonormal system in L2(Z/NZ) (wrt the probability
measure).

COROLLARY 44 (Fourier analysis mod N). Set f̂ (k) = 〈ψk, f 〉= Exψ−k(x) f (x). Then
(1) (continuity in L1)

∥∥ f̂
∥∥

∞
≤ ‖ f‖1.

(2) (Fourier inversion) f (x) = ∑k(N) f̂ (k)ψk(x).

(3) (Parseval formula) 1
N ∑x(N) | f (x)|2 = ∑k(N)

∣∣ f̂ (k)∣∣2.
(4) (Expansion of δ distribution) 1

N ∑k(N)ψ−k(x)ψk(y) = δx,y. Equivalently,

1
N ∑

k(N)

eN (k(x− y)) =

{
1 x = y
0 x 6= y

.

DEFINITION 45. Let f ,g ∈ L2(Z/NZ) we define their convolution to be

( f ∗g)(x) =
1
N ∑

a+b=x
f (a)g(b)

= Ey f (y)g(x− y) .

LEMMA 46. f̂ ∗g(k) = f̂ (k)ĝ(k).

PROOF. Ex ( f ∗g)(x)e−k(x)=Ex,y f (y)g(x−y)ψ−k(y)ψ−k(x−y)=Ex,z f (y)g(z)ψ−k(y)ψ−k(z).
�

2.1.2. Application: Roth’s Theorem (Lectures 6-8, 15,18,20/1/2016).

PROBLEM 47. Let A ⊂ Z/NZ be large enough. Must A contain a 3-AP, that is a solution to
x+ z = 2y?

Let α = #A
N = ‖A‖1 be the density of A. Here’s an easy combinatorial argument.

LEMMA 48. Suppose α > 1
2 . Then A contains Θ(N2) 3-APs.
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PROOF. For x ∈ A consider the sets {d | x+d ∈ A}, {d | x−d ∈ A} (basically shifts of A).
Each has density α > 1

2 and hence their intersection has density> 2α − 1. It follows that x is the
middle element of Θ(N) 3-APs. �

We count 3-APs using a Fourier expansion instead. Set

Λ3( f1, f2, f3) =
1

N2 ∑
x,d

f (x−d) f (x) f (x+d) ,

so that Λ3(A,A,A) is the (normalized) number of 3-APs in A, including degenerate ones. Then

Λ3( f1, f2, f3) =
1

N2 ∑
x,d

∑
k1,k2,k3

eN (k1(x−d)+ k2x+ k3(x+d)) f̂1(k1) f̂2(k2) f̂3(k3)

=
1

N2 ∑
k1,k2,k3

f̂1(k1) f̂2(k2) f̂3(k3)∑
x,d

eN ((k1 + k2 + k3)x+(k3− k1)d)

=
1
N ∑

k1,k2

f̂1(k1) f̂2(k2) f̂3(k1)∑
x

eN ((2k1 + k2)x)

= ∑
k

f̂1(k) f̂2(−2k) f̂3(k) .

In particular, let f1 = f2 = f3 = A be the characteristic functions of A. We then have

Λ3(A,A,A) = ∑
k

Â(k)2Â(−2k)

= α
3 + ∑

k 6=0
Â(k)2Â(−2k)

Naural to let fA(x) = A(x)−α be the balanced function, which has f̂A(k) =

{
Â(k) k 6= 0
0 k = 0

.

Then
Λ3(A,A,A) = Λ3(α,α,α)+Λ3( fA, fA, fA) = α

3 +Λ3( fA, fA, fA)

since in each of the other 6 terms some argument has f̂ supported away from zero, and some
argument has f̂ supported at zero. We conclude that:∣∣Λ3(A,A,A)−α

3∣∣ = |Λ3( fA, fA, fA)|

≤ ∑
k

∣∣ f̂A(k)
∣∣2∥∥ f̂A

∥∥
∞

=

(
1
N ∑

x
(A(x)−α)2

)∥∥ f̂A
∥∥

∞

=

(
1
N ∑

x

(
A(x)−2αA(x)+α

2))∥∥ f̂A
∥∥

∞

= α(1−α)
∥∥ f̂A
∥∥

∞
.

COROLLARY 49 (Base case). Suppose α > 1
2 . Then A contains Θα(N2) 3-APs.
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PROOF.
∥∥ f̂A
∥∥

∞
≤ ‖ fA‖1 =

1
N (#A(1−α)+(N−#A)α) = 2α(1−α). Thus

1
N2 ∑

x,d
A(x)A(x+d)A(x−d) ≥ α

3−2α
2(1−α)2

≥ α
3− 1

8
.

�

Idea: If f̂A(k) is large for some k, then f̂A correlates strongly with the function eN(kx), which is
constant on relatively lengthy APs. This forces f̂A to be relatively constant along such progressions,
showing that the restriction of A to such a progression has somewhat larger density, at which point
one can give an argument by induction.

THEOREM 50 (Roth 1953). For all α > 0 there is N0 = N0(α) such that for odd N > N0 and
A⊂ Z/NZ with density at least α , A has 3-APs.

PROOF. By downward induction on α (“density increment method”). Specifically, we show
that for any α > 0 if the theorem is true for α + α2

10 is it true for α as well. Applying this to the
infimum of the α for which the Theorem holds shows the infimum is 0.

Let A ⊂ [N] have density α . In order to deal with “wraparound” issues embed A in Z/MZ
where M = 2N +1 and let

fA(x) =

{
A(x)−α 0≤ x < N
0 N ≤ x < M .

and

1N(x) =

{
1 0≤ x < N
0 N ≤ x < M

so that A = fA +α1A as functions in Z/MZ. Repeating the calculation above we find

Λ3(A,A,A) = α
3
Λ3(1N ,1N ,1N)+ seven terms .

Here, Λ3 (1N ,1N ,1N) can be computed exactly, and each of the other error terms has the form
Λ3 ( f1, f2, f3) where each fi is either fA or the balanced version of α1N (since f̂A(0) = 0). Now by
C-S and Parseval,

|Λ3 ( f1, f2, f3)|=

∣∣∣∣∣∑
k(M)

f̂1(k) f̂2(−2k) f̂3(k)

∣∣∣∣∣≤ ∥∥ f̂i
∥∥

∞

∥∥ f j
∥∥

2 ‖ fk‖2

for any permutation (i, j,k) of (1,2,3). Now ‖ fA‖2 =
( 1

M

(
αN(1−α)2 +(1−α)Nα2))1/2

=( N
2N+1

)1/2
(α(1−α))1/2 and∥∥∥∥α1N−α

N
M

∥∥∥∥
2
= α

(
1
M

(
N
(

N +1
M

)2

+(N +1)
(

N
M

)2
))1/2

= α
(N(N +1))1/2

M
≤ α

2
.

It follows that each of the seven terms is bounded above by one of
∥∥ f̂A
∥∥

∞

α2

4 or
∥∥ f̂A
∥∥

∞

α3/2

2
√

2
or∥∥ f̂A

∥∥ α

2 , each of which is at most
∥∥ f̂A
∥∥ α

2 . Setting ε = α2

10 we divide in two cases:
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(1) (“quasi-randomness”) If
∥∥ f̂A
∥∥

∞
≤ ε then we have shown:

Λ3(A,A,A)≥ α
3−7

α3

20
>

α3

2
.

(2) (“structured case”) Suppose instead
∣∣Â(k)∣∣ ≥ ε for some k 6= 0. We will then construct a

longish AP P ⊂ Z/MZ on which A∩P has larger density, and then apply the induction
hypothesis to A∩P, noting that any 3-AP in A∩P is an AP in A.
(a) Let L,δ be a parameters to be chosen later.
(b) There is 1≤ r ≤ M

δL such that kr has a representative of magnitude at most δL (if not
then there are 1≤ r1 < r2 ≤ M

δL such that kr1,kr2 have distance at most δL, and take
r = r2− r1).

(c) Let P = r [L] = { jr}L−1
j=0 . Then ek is roughly constant on any progression b+P: since

kr has a representative of magnitude at most δL,

|ek(b+ jr)− ek(b)|= |ek( jr)−1|= 2
∣∣∣∣sin

(
π

kr
M

j
)∣∣∣∣≤ 2π

δL2

M

(d) We now compute f̂A by averaging over all translates of P:

ε ≤
∣∣ f̂A(k)

∣∣
=

∣∣∣∣∣ 1
M ∑

b(M)

1
L ∑

y∈P
fA(b+ y)e−k(b+ y)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
M ∑

b(M)

e−k(b)
1
L ∑

y∈P
fA(b+ y)

∣∣∣∣∣+ 1
M ∑

b

1
L ∑

y∈P
| fA(b+ y)| |e−k(b+ y)− e−k(b)|

≤

∣∣∣∣∣ 1
M ∑

b(M)

e−k(b)
1
L ∑

y∈P
fA(b+ y)

∣∣∣∣∣+ ε ‖ fA‖1 ,

that is
|Ebe−k(b)Ex∈b+P fA(x)| ≥

ε

2
− 2π√

M
.

(e) (Endgame) Let e(−θ) be the phase of the term in the paranthesis. Then we have
found

Ebe−k(b)e(θ)Ex∈b+P fA(x)≥
ε

2
− 2π√

M
.

Since fA averages to zero, this can also be written as

Eb (e−k(b)e(θ)+1)Ex∈b+P fA(x)≥
ε

2
− 2π√

N
.

The real parts of (e−k(b)e(θ)+1) are in [0,2]. Get b such that

Ex∈b+P fA(x)≥
ε

4
− 2π√

N
.

Therefore, for N large enough, the restriction of A to b+P has density at least α+ ε

5 =

α + α2

10 , and P itself is long.
�
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REMARK 51 (Corner cases). (1) Varvanides argument gives Θα(N2) 3-APs.
(2) Degenerate triples.
(3) The claim in Z and wraparound.

In fact, we have shown:

THEOREM 52. Let A⊂ {1, . . . ,N} have density� 1
loglogN . Then A has a 3-AP.

The best result to date is

THEOREM 53 (Bloom [2]). Let A⊂ {1, . . . ,N} have density� (log logN)4

logN . Then A has a 3-AP.

Previous results include Bourgain’s
√

log logN
logN [4] and Sanders’s (log logN)6

logN [10]. In the finite-

field setting it is possible to break the 1
logN density barrier; see [1].

Compare also

THEOREM 54 (Sárközy, Furstenberg). Let A⊂{1 . . . ,N} have density� (log logN)−2/5. Then
there are distinct a,a′ ∈ A such that a−a′ is a perfect square.

2.1.3. Remarks: additive number theory.
• Szemeredi’s Theorem and higher-order Fourier analysis.
• Corners Theorem.
• Sum-product; Bourgain–Katz–Tao.

2.2. Dirichlet characters and the Fourier transform on (Z/NZ)×

2.2.1. The Ramanujan sum (Lecture 9, 22/1/2016).

DEFINITION 55. The Ramanujan sum is cN(k) = ∑
′
a(N) eN(ka), that is the fourier transform of

the characteristic function of (Z/NZ)×.

PROPOSITION 56. ∑d|n cd(k) =

{
n n|k
0 n - k

, so that cn(k) = ∑d|(k,n) dµ
( n

d

)
, and in particular

cn(1) = µ(n).

PROOF. We sum:

∑
d|n

cd(k) = ∑
d|n

cn/d(k) = ∑
d|n

∑
a(n)

(a,n)=d

en(ka) = ∑
a(n)

en(ka) =

{
n n|k
0 n - k

.

Now apply Möbius inversion. �

COROLLARY 57. 1(x,N)=1 =
1
N ∑k(N)∑d|(k,N) dµ

(N
d

)
eN(kxxa)=∑k(N)

(
∑d|(k,N)

d
N µ
(N

d

))
eN(kx)

2.2.2. Basics.
• Construction

For each a ∈ (Z/NZ)×, let Ma ∈ U
(
L2 ((Z/NZ)×

))
be multiplication by A. Clearly MaMb =

Mab so this is a commuting family of unitary operators, hence jointly diagonalizable. Let a 7→
χ(a) be an eigenvalue system. The multiplicative relation above gives χ(a)χ(b) = χ(ab) so
χ : (Z/NZ)×→ C× is a group homomorphism
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Every associated eigenvector f satisfies f (a) = (Ma f )(1) = χ(a) f (1), so the eigenspace is 1-
dimensional and spanned by χ . Conversely, every χ ∈ Hom

(
(Z/NZ)× ,C

)
lies in an eigenspace,

and we see Hom
(
(Z/NZ)× ,C

)
is an orthonormal basis of L2 ((Z/NZ)×) (prob measure).

DEFINITION 58. A Dirichlet character (of modulus N) a group homomorphism (Z/NZ)×→
C×, or equivalently its pullback to Z: a multiplicative map χ : Z→ C such that χ(n) = 0 iff
(n,N) 6= 1.

EXAMPLE 59. The Legendre symbol
(

a
p

)
and its genearlization the Jacobi symbol are Dirichlet

characters mod p,N respectively.

For every N we have the principal character χ0(n) = 1(Z/NZ)×(n) =

{
1 (n,N) = 1
0 (n,N)> 1

.

The map χ4(n) =


1 n≡ 1(4)
−1 n≡−1(4)
0 2|n

is the unique non-principal character mod 4.

REMARK 60 (Motivation). For a∈ (Z/NZ)× we can expand the delta-function δa(n)=

{
1 n≡ a(N)

0 n 6≡ a(N)

in our basis:

δa(N) = ∑
χ(N)

〈χ,δa〉χ = ∑
χ(N)

1
φ(N)

χ̄(a)χ(n) =
1

φ(N) ∑
χ(N)

χ̄(a)χ(n)

where χ(n) = χ̄(n) = χ−1(n) = χ(n−1) is the inverse character. Then in a sum over the residue
class we have

∑
x≥n≡a(N)

f (n) =
1

φ(N) ∑
χ(N)

χ̄(a) ∑
n≤x

χ(n) f (n)

where we hope that the summand with the principal character χ = χ0(n) = 1(Z/NZ)×(n) gives the
main term, and there is cancellation in the other terms.

• Primitive characters (Lecture 10, 25/1/2016)
Note that if χ ′ is a Dirichlet character mod N′ where N′|N then we can obtain a Dirichlet character

mod N by setting χ(n) =

{
χ ′(n) (n,N) = 1
0 (n,N) = 1

. If N > N′ we say that χ is imprimitive. If χ is not

imprimitive (that is, it does not arise from this construction for any proper divisor N′|N) we say it
is primitive. Given a Dirichlet character χ and q ∈ Z say q is a period of χ if whenever a,b are
prime to q and a ≡ b(d) we have χ(a) = χ(b). Note that N is always a period, and that if χ is
imprimitive as above then N′ is a period.

LEMMA 61 (The conductor). Let q(χ) be the minimal positive period of χ .
(1) If q is a period then so is (q,N).
(2) More generally, if q1,q2 are periods then so is their gcd.
(3) Let q be a period. Then there is a unique character χ ′ mod q which agrees with χ on n

prime to Nq.
(4) The minimal period divides all periods, and the resulting character is primitive.
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PROOF. (1) If q is a period then so is xq+ yN for all x,y; (2) See PS2; (3) Let n be prime to q.
For any j such that n+ jq is prime to N (for example, j can be the produt of the primes dividing N
but not n) set χ ′(n) = χ(n+ jq), noting that the RHS is independent of the choice of j since q is a
period. This is clearly multiplicative and uniquely defined. (4) Follows from (2). �

DEFINITION 62. We call q(χ) the conductor of q.

• Values

For fixed a ∈ (Z/NZ)× we will consider the possible values χ(a) as χ ranges over ̂(Z/NZ)×. For
this let r be the multiplicative order of a mod N. Then for each χ , χ(a) must be a root of unity
of order dividing r. The set {χ(a)}

χ∈ ̂(Z/NZ)×
is a finite group of roots of unity, hence cyclic (a

finite subgroup of a field), say of order s|r. It follows that χ(as) = 1 for all χ ∈ ̂(Z/NZ)×. Let δ1
be the characteristic function of 1 ∈ (Z/NZ)×. Then 1

ϕ(N) ∑χ χ(a) = ∑χ 〈δ1,χ〉χ(a) = δ1(a). In
particular, if χ(as) = 1 for all χ then as = 1 and hence s= r. It follows that the set of values {χ(a)}
is exactly the set of roots of unity of order r. Finally, let χ be such that χ(a) = ζr is a primitive
root of unity of order r. Then multiplication by χ j gives a bijection between {χ | χ(a) = ζ u

r },{
χ | χ(a) = ζ

u+ j
r

}
so all these sets must have the same size. We have shown:

PROPOSITION 63 (Existence of characters). Let a ∈ (Z/NZ)× have order r. Then for each
root of unity ζ ∈ µr there are ϕ(N)

r Dirichlet characters χ mod N such that χ(a) = ζ .

2.2.3. L-functions and Dirichlet’s Theorem on primes in arithmetic progressions (Lec-
tures 11-12, 27,29/12/2016). We now reprise the argument of Theorem 17.

DEFINITION 64. For a Dirichlet character χ let L(s; χ) be the Dirichlet series ∑n≥1 χ(n)n−s.

LEMMA 65. L(s; χ) converges absolutely in ℜ(s)> 1, where it has the Euler product L(s; χ) =

∏p (1−χ(p)p−s)
−1.

EXAMPLE 66. Let χ0 be the principal character mod q. Then L(s; χ0) =
[
∏p|q (1− p−s)

]
ζ (s).

In particular, L(s; χ0) continues to ℜ(s)> 0 and has a pole at s = 1.

LEMMA 67. Let χ be a non-principal character. Then L(s; χ) converges in ℜ(s)> 0.

PROOF. We have ∑a(qN) χ(a)=∑
′
a(q) χ(a)=ϕ(q)〈χ0,χ〉= 0 so the series ∑n χ(n) is bounded.

For σ > 0 {n−σ}∞

n=1 converges monotonically to zero so by Dirichlet’s criterion the series ∑n≥1 χ(n)n−σ

converges. �

PROPOSITION 68. Let χ be non-principal. Then L(1; χ) 6= 0.

PROOF. Consider the Dirichlet series Z(s) = ∏χ L(s; χ) (this is roughly the Dedekind zeta-
function of K =Q(ζN)). The Euler factor at p - N is

∏
χ

1

(1−χ(p)p−s)−1 .

Suppose that p has order r mod N. By Proposition 63, this proudct is exactly[
∏

ζ∈µr

(
1−ζ p−s)]−ϕ(N)/r

=
(
1− p−rs)−ϕ(N)/r
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since ∏ζ∈µr(1−ζ X) = 1−X r (the two polynomials have degree r, agree at the r+1 points µr ∪
{0}). It follows that Z(s) is a Dirichlet series with non-negative coefficients, and in particular that
Z(σ)≥ 1 for σ > 1. Suppose χ 6= χ̄ . Then if L(1; χ) = 0 then also L(1; χ̄) = 0 and so the product
of the two zeroes will cancel the pole of L(s; χ0) at s = 1, a contradiction.

The real case requires more work, and we give three proofs.

(1) [5, pp. 33-34] Suppose χ is real and L(1; χ) = 0. Consider the auxiliary Dirichlet series
ψ(s) = L(s;χ0)L(s;χ)

L(2s;χ0)
, which converges absolutely in ℜ(s)> 1, is meromorphic in ℜ(s)> 0,

and is regular for ℜ(s)> 1
2 (the numerator is regular at s = 1 and the denominator is non-

vanishing in ℜ(s)> 1
2 ). Its Euler product (convergent in ℜ(s)> 1) is

∏
p-q

(
1− p−2s)

(1− p−s)(1−χ(p)p−s)
= ∏

p-q

(1+ p−s)

(1−χ(p)p−s)
= ∏

χ(p)=1

1+ p
−s

1− p−s .

In particular, ψ(s) = ∑n≥1 ann−s for some positive coefficients an. Now consider its Tay-
lor expansion about s = 2, which has radius of convergence at least 3

2 . Differentiating m
times we see ψ(m)(2) = (−1)m

∑n≥1 an (logn)m n−2 so there are bm ≥ 0 such that

ψ(s) = ∑
m≥0

(−1)mbm(s−2)m = ∑
m≥0

bm(2− s)m .

Now any 1
2 < σ < 2 is in the domain of convergence and since (2− σ) > 0 we have

ψ(σ)≥ b0 = ψ(2)> 1. But ψ(1
2) = 0 due to the pole of the denominator there.

(2) By Landau’s Theorem, the domain of convergence of Z(s) ends with a singularity on the
real axis. If L(1; χ) = 0 for some χ then this will cancel the simple pole of L(s; χ0) there,
so that Z(s) will be regular at s = 1. Since ζ (s),L(s; χ) are regular on (0,1) it would
follow that the series definite Z(s) converges in ℜ(s)> 0. However, for real σ > 0,

ζK(s) = ∏
p-N

(
1− p−rσ

)−ϕ(N)/r ≥∏
p-N

(
1− p−ϕ(N)σ

)−1
= ∑

(n,N)=1
n−ϕ(N)σ ,

which diverges for σ = 1
ϕ(N) by comparison with the harmonic series.

(3) Replacing χ with its primitive counterpart changes only finitely many Euler factors in
L(s; χ) and doesn’t affect vanishing at s = 1. Now if χ2 = 1 then χ(n) = χd(n) =

(d
n

)
(Kronecker symbol) for some quadratic discriminant d, and we have

THEOREM 69 (Dirichlet’s class number formula 1839; Conj. Jacobi 1832). For d < 0,
L(1; χd) =

2πh(d)
w|d|1/2 > 0. For d > 0, L(1; χd) =

h(d) logε

d1/2 > 0 where w is the number of roots

of unity in Q(
√

d) (usually w = 2), h(d) is the number of equivalence classes of binary
quadratic forms of discriminant d and ε is a fundamental unit of norm 1.

�

REMARK 70. For any character χ mod N, write χ ′ for its primitive counterpart. Then ζK(s) =
∏χ(N)L(s; χ ′) is exactly the Dedekind zetafunction of K =Q(ζN). Since L(s; χ ′0) = ζ (s) has a sim-
ple pole at s = 1 with residue 1, we have by the class number formula for Dedekind zetafunctions
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that

∏
χ 6=χ0

L(1; χ
′) = Ress=1 ζK(s) =

(2π)φ(N)/2hR

w |∆|1/2 > 0

where h = Cl(Q(ζN)) is the class number, R is the regulator, ∆ is the discriminant and w is the
numebr of roots of unity in the field. Finally, since L(1; χ) = L(1; χ ′)∏p|N

(
1−χ ′(p)p−1) we see

that either both vanish or neither does.

THEOREM 71 (Dirichlet 1837 [6]). Let (a,N) = 1. Then there are infinitely many primes p
such that p≡ a(N).

PROOF. For each character χ mod N and s with ℜ(s)> 1 consider logL(s; χ)=∑p ∑
∞
m=1 χ(p)m p−ms

(note that |χ(p)p−s|< 1 so we may use the Taylor expansion for log(1−χ(p)p−s). Since ∑p ∑m≥2 p−m≤
∑n≥2 ∑m≥2 n−m = ∑n≥2

1
1− 1

n
n−2 = ∑n≥2

1
n(n−1) =

1
2 we see that for ℜ(s)> 1 we have

logL(s; χ) = ∑
p

χ(p)p−s +O(1) .

Now 1
ϕ(N) ∑χ χ̄(a)χ(n) = ∑χ 〈δa,χ〉χ = δa. Thus

∑
p≡a(N)

p−s = ∑
p

δa(p)p−s =
1

ϕ(N)∑
χ

χ̄(a) logL(s; χ)+O(1) .

Now let s → 1+ through real values. For non-principal χ we have logL(s; χ) → logL(1; χ)
which is finite by the Proposition. For the principal character, logL(s; χ0)→ ∞ since L(s; χ0) =
∏p|N (1− p−s)ζ (s). It follows that the RHS diverges as s→ 1+. By the MCT we conclude that

∑
p≡a(N)

1
p
= ∞ .

In particular, there are infinitely many such primes. �

REMARK 72. In fact, our proof shows

∑
p≡a(N)

p≤x

p−1 =
1

ϕ(N)
log logx+O(1) .

Moreover, it is natural to believe that the primes are evenly distributed between the residue
classes. We will prove a quantitative version, but note the theory of “prime number races”.

2.2.4. Additive transform of multiplicative characters: Gauss’s sum (Lecture 12, 29/1/2016).
Consider the (additive) Fourier transform of a Dirichlet character χ mod N. Since χ̂(k)= 1

N ∑a(N) χ(a)eN(−ka)
we note that for u ∈ (Z/NZ)× we have

χ̂(ku) =
1
N

′

∑
a(N)

χ(a)eN(−kau)

= χ̄(u) · 1
N

′

∑
a(N)

χ(au)eN(−kau)

= χ̄(u)χ̂(k) .
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In particular, from the point of view of computing |χ̂(k)| we can replace k with uk.

LEMMA 73. For k ∈ Z/NZ there is u ∈ (Z/NZ)× such that ku≡ (k,N) mod N.

PROOF. Let g = gcd(k,N), k′ = k
g , N′ = N

g . Then ku ≡ g(N) is equivalent to k′u ≡ 1(N′).
Since (k′,N′) = 1 there is u′ prime to N′ such that k′u′ ≡ 1(N′), and it remains to find u = u′+kN′

which is prime to N. The existence of such j was verified in Lemma 61. �

Accordingly we’ll now assume k|N. Taking absolute values

|χ̂(k)|2 = 1
N2

′

∑
a,b(N)

χ(a)χ̄(b)eN (k(b−a)) ,

we change variables by setting b = ca for c ∈ (Z/NZ)×, getting

|χ̂(k)|2 =
1

N2

′

∑
a,c(N)

χ(a)χ̄(ac)eN (k(ac−a))

=
1

N2

′

∑
a,c(N)

χ̄(c)eN (k(c−1)a) .

Now if k(c−1) 6≡ 0(N) the sum over a is zero, while k(c−1)≡ 0(N) means c≡ 1
(N

k

)
so that

|χ̂(k)|2 = 1
N ∑

c≡1(N/k)
χ̄(c) .

LEMMA 74. Let q|N. Then
{

c ∈ (Z/NZ)× | c≡ 1 (q)
}

is a subgroup of (Z/NZ)×, and χ is
trivial on this subgroup iff q is a period.

PROOF. This is the kernel of the reduction map (Z/NZ)×→ (Z/qZ)×, so is a subgroup. If q
is a period then whenever c ≡ 1(q), χ(c) = χ(1) = 1. If χ vanishes on the subgroup then given
a,b prime to N with a≡ b(q), let ā be an inverse mod N. Then ā is also an inverse mod q, so that
āb≡ 1(q), χ(āb) = 1 and hence χ(a) = χ(b).

We have therefore proved (for the principal character see Proposition 56): �

PROPOSITION 75. Let χ be a non-principal Dirichlet character mod N, and let k ∈ Z/NZ.
With q = N

gcd(k,N) we have:

|χ̂(k)|=

{√
φ(N)

Nφ(q) q is a period of χ

0 q is not a period of χ

.

COROLLARY 76. When χ is a primitive character we have

|χ̂(k)|=

{
1√
N

(k,N) = 1

0 (k,N)> 1
.

2.3. The Fourier transform on R/Z and the Poisson summation formula

2.3.1. Fourier series (Lecture 13, 1/2/2016).
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2.3.1.1. L2 theory.
• {e(kx)}k∈Z ⊂C∞(R/Z)⊂C(R/Z)⊂ L2(R/Z) is a set of characters, hence an orthonor-

mal system in L2(R/Z) (prob measure). The unital algebra they span is closed under
complex conjugation and separates the points, hence is dense in C(R/Z). This is dense
in L2(R/Z) so {e(kx)}k∈Z is a complete orthonormal system. Set

f̂ (k) = 〈e(kx), f 〉L2(R/Z) =
∫
R/Z

f (x)e(−kx)dx .

• Then for f ∈ L2 we have f = ∑k∈Z f̂ (k)e(kx) (convergence in L2). This must converge
almost everywhere, but at no specific point.
• We have Parseval’s identity ‖ f‖2

L2 = ∑k∈Z |〈ek, f 〉|2 =
∥∥ f̂
∥∥

L2(Z).

• As usual the integral defining f̂ (k) makes sense for f ∈ L1 (note that L2(R/Z)⊂ L1(R/Z)
since the measure is finite), and we note

∥∥ f̂
∥∥

L∞(Z) ≤ ‖ f‖L1(R/Z).

• As usual (̂ f ∗g)(k) = f̂ (k)ĝ(k).
We are interested in pointwise convergence of the Fourier expansion. We divide this in two parts.

2.3.1.2. Smoothness⇒ decay. Suppose f ∈C1. Then integrating by parts shows that for k 6= 0,

f̂ (k) =
1

2πik
f̂ ′(k) .

By induction, this means that for k 6= 0 and r ≥ 0,∣∣ f̂ (k)∣∣≤ ‖ f‖Cr

(2π)r |k|
−r .

COROLLARY 77. For f ∈C2, the series ∑k∈Z f̂ (k)e(kx) converges uniformly absolutely.

EXERCISE 78 (PS2). Supose that for r ≥ 1 we have
∣∣ f̂ (k)∣∣� |k|−r−ε . Then ∑k f̂ (k)e(kx) ∈

Cr−1(R/Z).

2.3.1.3. Convergence to f .

DEFINITION 79. Set (sn f )(x)=∑|k|≤n f̂ (k)e(kx) and (σN f )(x)= 1
N ∑|n|<N (sn f )(x)=∑|k|<N

(
1− |k|N

)
f̂ (k)e(kx).

The second sum is smoother, so we expect it to be better behaved.

LEMMA 80. sn f = Dn ∗ f , σN f = FN ∗ f where

Dn(x) = ∑
|k|≤N

e(kx) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

(“Dirichlet kernel”) and

FN(x) =
1
N ∑

n<N
Dn(x) =

1
N

(
sin(πNx)
sin(πx)

)2

(“Fejér kernel”).
Both kernels satisfy

∫
R/ZDn(x)dx =

∫
R/ZFN(x)dx = 1. Moreover, FN(x)≥ 0 for all x.

PROOF. Calculation. �
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THEOREM 81 (Fejér). Suppose f ∈ L1(R/Z) is continuous at x. Then limN→∞ (σN f )(x) = x.
In particular, if f ∈ L1(R/Z) and limn→∞ sn f (x) exists, it equals f (x).

PROOF. We have

σN f (x)− f (x) =
∫
R/Z

FN(y) f (x+ y)dy−
∫
RZ

FN(y) f (x)dy

=
∫
R/Z

FN(y)( f (x+ y)− f (x))dy .

Given ε > 0 let 0 < δ ≤ 1
2 be such that | f (x+ y)− f (x)| ≤ ε if |y| ≤ δ . Then

|σN f (x)− f (x)| ≤ ε

∫
|y|≤δ

FN(y)dy+CN

∫
δ≤|y|≤ 1

2

(| f (x+ y)|+ | f (x)|)dy

where CN(δ ) = max
{

FN(y) | δ ≤ |y| ≤ 1
2

}
. Since

∫
|y|≤δ

FN(y)dy≤
∫
R/ZFN(y)dy = 1 we see that

|σN f (x)− f (x)| ≤ ε +(‖ f‖L1 +(1−2δ ) | f (x)|)CN(δ ) .

Since CN(δ ) = Oδ (N−1) (PS2), the claim follows. �

REMARK 82. The Dirichlet kernel takes negative values. Since ‖Dn‖L1 � logn, the proof
would not have worked with it.

In fact, Fejér’s theorem can be strengthned to

THEOREM 83 (Fejér). Suppose f ∈L1(R/Z) has limx→x±0
f (x)=L±. Then limN→∞ (σN f )(x)=

L++L−
2 . In particular, if sn f (x) converges it converges to that limit.

REMARK 84. Suppose f has a jump discontinuity at x0 and is otherwise smooth. Then
sN f (x)→ f (x) for all x 6= 0 (pointwise), but this convergence is not uniform: for fixed N, sN f (x)
has a “spike” of height about L++c(L+−L−) at a point xN = x0+

1
2N , an similarly limN→∞ sN f (x0−

1
2N ) = L−+ c(L−−L+).

2.3.2. The Poisson Summation formula (Lecture 14, 3/2/2016).
LEMMA 85. Let ϕ ∈ S(R). Then Φ(x) = ∑n∈Zϕ(x+n) ∈C∞(R/Z).
By our Fourier inversion theorem, this means that

(2.3.1) Φ(x) = ∑
k∈Z

Φ̂(k)e(kx)

where

Φ̂(k) =
∫
R/Z

Φ(x)e(−kx)dx =
∫ 1

0

(
∑
n∈Z

ϕ(n+ x)

)
e(−kx)dx

= ∑
n∈Z

∫ n+1

n
ϕ(x)dx =

∫
R

ϕ(x)e(−kx)dx .

DEFINITION 86. For f ∈ L1(R) set f̂ (k) =
∫
R f (x)e(−kx)dx.

PROPOSITION 87 (Poisson sum). Let ϕ ∈ S(R). Then

∑
n∈Z

ϕ(n) = ∑
k∈Z

ϕ̂(k)

PROOF. Set x = 0 in (2.3.1). �
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2.4. Application: Pólya–Vinogradov

2.4.1. The meaning of “Smooth cutoff” (Lecture 15, 5/2/2016).

LEMMA 88 (Cutoff at ). Let ϕ ∈ S(R), and let X ≥ 1. Then ∑n∈Z
∣∣ϕ ( n

X

)∣∣ = Oϕ(X) . In
particular, for any bounded f : Z→ C we have

∑
n∈Z

f (n)ϕ
( n

X

)
= Oϕ,‖ f‖

∞
(X) .

PROOF. Fix T > 1. Then there is C =C(ϕ,T ) such that for |x| ≥ 1, |ϕ(x)| ≤Cx−T and hence

∑
|n|>X

∣∣∣ϕ ( n
X

)∣∣∣ ≤ 2C ∑
|n|>X

( n
X

)−T

≤ 2C
(

1+
∫

∞

X

( x
X

)−T
dx
)

= 2C
(

1+XT
[

x1−T

1−T

]∞

X

)
≤ 2C

(
X +

X
T −1

)
.

Also,

∑
|n|≤X

∣∣∣ϕ ( n
X

)∣∣∣≤ (2X +1)‖ϕ‖
∞
= Oϕ(X) .

�

We also need the “dual” version

LEMMA 89. Let ϕ ∈ S(R) and let X ≥ 1. Then for any T > 1, ∑|n|≥1 |ϕ (nX)|= Oϕ,T
(
X−T).

In particular, for any bounded f : Z→ C we have

∑
n∈Z

f (n)ϕ (Xn) = f (0)ϕ(0)+O‖ f‖
∞
,ϕ,T

(
X−T) .

PROOF. Let C be such that |ϕ(x)| ≤Cx−T for |x| ≥ 1. Then

∑
|n|≥1
|ϕ(nX)| ≤ 2C

∞

∑
n=1

(nX)−T =
2Cζ (T )

XT .

�

2.4.2. Smooth version, applications.

THEOREM 90 (Polya–Vinogradov). Let χ be primitive mod q > 1 and let ϕ ∈ S(R). Then
∑n∈Z χ(n)ϕ

(n−M
N

)
�ϕ

√
q.

PROOF. Several stages.
(1) The sum is long: We have the trivial bound

∑
n∈Z

χ(n)ϕ
(

n−M
N

)
≤ ∑

n∈Z

∣∣∣ϕ ( n
N

)∣∣∣= Oϕ(N) .

In particular, the claim is trivial unless N�√q, which we assume from now on.
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(2) Gauss sum: Since χ is primitive we have χ(n) = τ(χ)
q ∑k(q) χ̄(k)eq(kn) so

∑
n∈Z

χ(n)ϕ
(

n−M
N

)
=

τ(χ)

q ∑
n∈Z

∑
k(q)

χ̄(k)eq(kn)ϕ
(

n−M
N

)
.

(3) Poisson sum: Let f (x) = ϕ
(x−M

N

)
e
(

kx
q

)
. Then f̂ (ξ ) = Ne

(
−M(ξ − k

q)
)

ϕ̂

(
N(ξ − k

q)
)

and hence

∑
n∈Z

eq(kn)ϕ
(

n−M
N

)
= N ∑

n∈Z
e
(
−M(n− k

q
)

)
ϕ̂

(
N(n− k

q
)

)
and

∑
n∈Z

χ(n)ϕ
(

n−M
N

)
=

Nτ(χ)

q ∑
|k|≤ q

2

χ̄(k) ∑
n∈Z

e
(
−M(n− k

q
)

)
ϕ̂

(
N(n− k

q
)

)
.

(4) Rapid decay of ϕ̂: This will shorten our dual sum. We choose k so that
∣∣∣ k

q

∣∣∣≤ 1
2 , at which

point the proof of Lemma 89 still applies to the inner sum, so

=
Nτ(χ)

q ∑
|k|≤ q

2

χ̄(k)e
(

Mk
q

)
ϕ̂

(
Nk
q

)
+

Nτ(χ)

q
·qOϕ,T

(
N−T) .

The remaining sum is certainly at most ∑|k|≥1

∣∣∣ϕ̂ (Nk
q

)∣∣∣.
(a) If N ≤ q we apply Lemma 88 to get the bound

∑
n∈Z

χ(n)ϕ
(

n−M
N

)
=

Nτ(χ)

q
O
( q

N

)
+ τ(χ)O(q−

T−1
2 ) = O(q1/2) .

(b) If N ≥ q we may apply Lemma 89 get for any T ,

∑
n∈Z

χ(n)ϕ
(

n−M
N

)
= τ(χ)O

(( q
N

)T
)
+ τ(χ)O(q−

T−1
2 )

= O(q1/2) .

�

REMARK 91. Note that the precise choice of ϕ and the precise values for T are immaterial.
This can be extended to non-primitive χ .

COROLLARY 92. Let χ be primitive, of conductor q > 1. Let n be minimal such that χ(n) 6= 1
(perhaps χ(n) = 0). Then n = O(q1/2).

PROOF. Let ϕ be supported on [−ε,1+ ε], valued in [0,1], and satisfying ϕ ≡ 1 on [0,1].
Suppose that χ(n) = 1 if |n| ≤ N is prime to q. Then on the one hand

∑
n∈Z

χ(n)ϕ(
n
N
) = O(q1/2)

and on the other hand

∑
n∈Z

χ(n)ϕ
( n

N

)
≥ N−2εN = (1−2ε)N .
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It follows that
N = O(q1/2) .

�

This can be improved, noting that if χ(n) = 1 up to some y then the bias toward 1s continues
much farther.

DEFINITION 93. Call n ∈ Z y-smooth if every prime divisor of n is at most y. Let ψ(x;y)
denote the number of y-smooth numbers up to x.

In those terms ,if χ(n) = 1 for n≤ y then also χ(n) = 1 for all y-smooth n, with the same ϕ as
before,

∑
n∈Z

χ(n)ϕ
(n

x

)
≥ ψ(x;y)−2εx− ∑

y<p≤q

x
p
.

Now suppose that
√

x < y < x. Then (since no integer up to x is divisible by two primes >
√

x) we
have

ψ(x;y) = [x]− ∑
y<p≤x

[
x
p

]
≥ x−1− ∑

y<p≤x

x
p
.

It follows that if χ(n) = 1 up to y, and if y < x < y2 then for any ε > 0

Oε(q1/2) ≥ (1−2ε)x−1−2x ∑
y<p≤x

1
p

= (1−2ε)x−1−2x
[

log logx+C+O
(

1
logx

)
− log logy−C+O

(
1

logy

)]
= x(1−2ε−2log

logx
logy

)+O
(

x
logx

)
.

Given δ > 0 suppose y = x
1√
e (1+δ ). Then we have logx

logy =
1

1√
e (1+δ )

=
√

e(1+δ )−1 and hence

O
(

x
logx

)
+2(1−2ε−1+2log(1+δ ))x = O(q1/2) .

Now given a small δ > 0 choose ε < log(1+δ ). Then the LHS is Ω(x), and hence

x = O(q1/2)

and
y�ε q

1
2
√

ε
+ε

.

The argument above (due to Vinogradov) gives:

THEOREM 94. There is n�ε q
1

2
√

e+ε such that χ(n) 6= 1.

Further improvement:

THEOREM 95 (Burgess).
∣∣∑n≤t χ(n)

∣∣≤ t
100 if t > q

1
4+ε .

COROLLARY 96. First non-residue at q
1
4+ε . Vinogradov trick improves this to q

1
4
√

e+ε .

EXERCISE 97. Apply Vinogradov trick to Burgess bound.
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Theorem 90 is essentially best possible.

PROPOSITION 98. There are N,M such that ∑n∈Z χ(n)ϕ
(n−M

N

)
� N√

q .

PROOF. Consider∣∣∣∣∣ ∑
M(q)

eq(−M) ∑
n∈Z

χ(n)ϕ
(

n−M
N

)∣∣∣∣∣≤ qmax
M

∣∣∣∣∣∑n∈Zχ(n)ϕ
(

n−M
N

)∣∣∣∣∣ .
Applying Poisson sum as before we have

∑
M(q)

eq(−M) ∑
n∈Z

χ(n)ϕ
(

n−M
N

)
=

Nτ(χ)

q ∑
k(q)

χ̄(k) ∑
n∈Z

ϕ̂

(
N(n− k

q
)

)
∑

M(q)
eq(−M)e

(
−M(n− k

q
)

)
.

Now since M is integral, e(−Mn) = 0 and ∑M(q) eq (M(k−1)) =

{
q k = 1
0 k 6= 1

so

=
Nτ(χ)

q
q ∑

n∈Z
ϕ̂

(
N(n− 1

q
)

)
.

Using Lemma 89 we see that

√
q

N
q

(∣∣∣∣ϕ̂(N
q
)

∣∣∣∣+ small
)
≤max

M

∣∣∣∣∣∑n∈Zχ(n)ϕ
(

n−M
N

)∣∣∣∣∣ .
Now ϕ̂(x) is an analytic function, and in particular is non-vanishing on [0,1]. Letting N = qx where
ϕ̂(x) 6= 0 gives

max
M

∣∣∣∣∣∑n∈Zχ(n)ϕ
(

n−M
N

)∣∣∣∣∣≥√qx |ϕ̂(x)|− small .

Taking N = [qx] will be fine since ϕ ′(x) is bounded. �

2.4.3. Sharp cutoff. For the following, see [5] , [9, §9.4], or [8, Ch. 12] which gives a good
constant and also covers the smooth case.

(1) For χ primitive,
∣∣∑n=M+N

n=M+1 χ(n)
∣∣ ≤ q logq, and for χ non-principal

∣∣∑n=M+N
n=M+1 χ(n)

∣∣ ≤
6
√

q logq.
(a) On GRH (Montgomery–Vaughan Inv Math 43; simpler proof by Granville–Soundararajan

JAMS 20 2007)
∣∣∑n=M+N

n=M+1 χ(n)
∣∣�√q log logq.

(b) For all q there are N,M such that
∣∣∑n=M+N

n=M+1 χ(n)
∣∣≥ √q

π
.

(c) (Paley) There is c > 0 such that for infinitely many quadratic discriminants d,

max
M,N

∣∣∣∣∣n=M+N

∑
n=M+1

χd(n)

∣∣∣∣∣> c
√

d log logd .

(d) These bounds (not Burgess) are trivial for N�√q. It is believed that
∣∣∑n=M+N

n=M+1 χ(n)
∣∣�ε

N
1
2 qε .
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2.4.4. Connection to Dirichlet L-functions [see Goldmakher’s Thesis]. Set Sχ(t)=∑n∈Z χ(n)ϕ
(n

t

)
(with ϕ ∈ S(R) having the same perity as χ) Then for ℜ(s)> 1,∫

∞

0
Sχ(t)t−s dt

t
= 2

∞

∑
n=1

χ(n)
∫

∞

0
ϕ

(n
t

)
t−s dt

t

=

(
2
∫

∞

0
ϕ(t)ts dt

t

)(
∞

∑
n=1

χ(n)n−s

)
,

and the manipulation is justified by the absolute convergence. Now
∫

∞

0 ϕ(t)ts dt
t is holomorphic for

ℜ(s)> 0. Our bound Sχ(t)�ϕ

√
q shows that the LHS converges absolutely for ℜ(s)> 0, and on

the RHS the same is true for the Mellin transform
(
2
∫

∞

0 ϕ(t)ts dt
t

)
. It follows that L(s; χ) extends

meromorphically to ℜ(s) > 0. In fact, the extension is holomorphic, since by varying ϕ we can
ensure the denominator in the following expression is non-vanishing at any specific points

L(s; χ) =

∫
∞

0 Sχ(t)t−s dt
t

2
∫

∞

0 ϕ(t)ts dt
t

.

EXAMPLE 99. L(1; χ)� logq.

PROOF.
∫

∞

0 Sχ(t)t−1 dt
t =

∫ q
0 Sχ(t)t−2 dt+

∫
∞

q Sχ(t)t−2 dt�
∫ q

0 t−1 dt+
√

q
∫

∞

q t−2 dt =O(logq+
1). �

EXERCISE 100 (Convexity bound). L(1
2 ; χ)� q1/4.

CONJECTURE 101 (ELH). L
(1

2 ; χ
)
�ε qε .

THEOREM 102 (Burgess). L
(1

2 ; χ
)
�ε q

1
4−

1
16+ε .

2.5. The Fourier transform on Rn

LEMMA 103. Assuming all integrals converge,

̂ϕ(ax+b)(k) =
∫
R

ϕ(ax+b)e(−kx)dx =
e
(kb

a

)
a

ϕ̂

(
k
a

)
,

integration by parts shows (smoothness therefore decay)

ϕ̂(k) =
1

(2πik)d ϕ̂(d)(k) .

and differentiation under the integral sign gives (decay therefore smoothness)

ϕ̂
(r)(k) = (−2πi)rx̂rϕ(x) .

COROLLARY 104. Let ϕ ∈ S(R). Then ϕ̂ ∈ S(R).

THEOREM 105 (Fourier inversion formula). Let ϕ ∈ S(R).

ϕ(x) =
∫
R

ϕ̂(k)e(kx)dk .
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PROOF. We have

∑
n∈Z

ϕ(T n+ x) =
1
T ∑

k∈Z
ϕ̂

(
k
T

)
e
(

k
T

x
)
.

Letting T → ∞, the LHS converges to ϕ(x), the RHS to
∫
R ϕ̂(k)e(kx)dk. �

LEMMA 106 (Fourier inversion). Let f ∈ L1(R) and suppose that S =
∫+∞

−∞
f̂ (t)e2πitx dx con-

verges as a symmetric improper integral for some t. Suppose that f is continuous at x. Then
S = f (x).

PROOF. Let ϕ(u)∈C∞
c (R) be odd. Setting Su(x)=

∫ u
−u f̂ (t)e2πitx dt =(Du ∗ f )(x), we consider

the average
1
T

∫
∞

0
ϕ

( u
T

)
Su(x)du =

∫
∞

0
ϕ(u)STu(x)du−−−→

T→∞

(∫
∞

0
ϕ(u)du

)
S .

On the other hand,
1
T

∫
∞

0
ϕ(u/T )Su(x)du =

1
T

∫ u=∞

u=0
duϕ(u/T )

∫ t=u

t=−u
dte2πitx

∫ y=+∞

y=−∞

dye−2πity f (y)dy

converges absolutely so we may change the order of integration and obtain
1
T

∫ T

0
ϕ(u/T )Su(x)du =

1
T

∫ u=∞

u=0

∫ y=+∞

y=−∞

dudyϕ(u/T ) f (y)
∫ t=u

t=−u
dte2πit(x−y)

=
1
T

∫ y=+∞

y=−∞

dy f (y)
∫ u=∞

u=0

e2πi(x−y)u− e−2πi(x−y)u

2πi(x− y)
duϕ(u/T )

= − 1
2πi

∫ y=+∞

y=−∞

dy f (y)
ϕ̂ (T (x− y))

x− y

= − 1
2πi

∫
R

dy f (x+ y)
ϕ̂(Ty)

y
.

Now ϕ̂(y)
2πiy is the Fourier transform of

∫ u
−∞

ϕ(t)dt. In particular,
∫
R

ϕ̂(Ty)
2πiy dy=

∫
R

ϕ̂(y)
2πiy dy=

∫ 0
−∞

ϕ(u)du=
−
∫

∞

0 ϕ(u)du. It follows that(∫
∞

0
ϕ(u)du

)
S−
(∫

∞

0
ϕ(u)du

)
f (x) =

1
2πi

∫
R

dy [ f (x)− f (x+ y)]
ϕ̂(Ty)

y
.

Choosing δ such that | f (x+ y)− f (x)| ≤ ε for |y| ≤ δ and setting CT = sup{|ϕ̂(y)| | |y| ≥ T} we
get:∣∣∣∣∫ ∞

0
ϕ(u)du

∣∣∣∣ |S− f (x)| ≤ ε

2π

∫
R

∣∣∣∣ ϕ̂(Ty)
y

∣∣∣∣dy+
1

2π
| f (x)|

∫
|y|≥T δ

∣∣∣∣ ϕ̂(y)y

∣∣∣∣dy+
1

2πδ
CT δ ‖ f‖L1

and, taking T → ∞ and using Riemann–Lebesuge we get∣∣∣∣∫ ∞

0
ϕ(u)du

∣∣∣∣ |S− f (x)| ≤ ε

2π

∥∥∥∥ ϕ̂(y)
y

∥∥∥∥
L1(R)

.

�

COROLLARY 107 (Fourier inversion formula). Suppose that f , f̂ ∈ L1(R) and in addition f ∈
C(R). Then f (x) =

∫
R f̂ (k)e(kx) for all x.
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CHAPTER 3

Dirichlet series and the Prime Number Theorem

We’d like to estimate ∑n≤x an, and we saw that it’s better to work with ∑n anϕ
( n

X

)
. We made

gains here via additive Fourier expansion of ϕ (Poisson sum). We will now make a multiplicative
Fourier expansion. We first investigate the associated transform.

3.1. Preliminaries

3.1.1. The Mellin Transform and zetafunction counting (Lecture 18, 26/2/2016).

DEFINITION 108. For a reasonable ϕ defined on R>0 set

ϕ̃(s) =
∫

∞

0
ϕ(x)xs dx

x
can call this the Mellin transform of ϕ .

This is the Fourier transform on the locally compact abelian group R×>0, isomorphic to R+ via
the logarithm map. We thus get:

THEOREM 109. Suppose ϕ decays rapidly enough. Then ϕ̃ extends to a meromorphic function,
and in any vertical strip where the integrals converge absolutely, we have

ϕ(x) =
1

2πi

∫
(c)

ϕ̃(s)x−s ds .

3.1.2. Zetafunction counting.
3.1.2.1. Setup and motivation. Fix a smooth cutoff ϕ ∈ C∞

c (R). We then have for c large
enough that

∞

∑
n=1

anϕ

( n
X

)
=

1
2πi

∞

∑
n=1

an

∫ c+i∞

c−i∞
ϕ̃(s)

( n
X

)−s
ds

=
1

2πi

∫ c+i∞

c−i∞
ϕ̃(s)X sD(s)ds ,

assuming the integral and the series converge absolutely. Here D(s) is the multiplicative generating
series

D(s) =
∞

∑
n=1

ann−s .

We need c large enough so that the series converges absolutely, and small enough to be in the strip
of definition of ϕ̃ .

COROLLARY 110. When everything converges absolutely, we have∣∣∣∣∣ ∞

∑
n=1

anϕ

( n
X

)∣∣∣∣∣�
(∫

(c)
|ϕ̃(s)D(s)|d |s|

)
Xc .
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In particular, ∣∣∣∣∣ ∞

∑
n=1

anϕ

( n
X

)∣∣∣∣∣�ε Xσac+ε .

We would now like to shift the contour of integration as far to the left as possible, depending
on the domain of holomorphy of D(s) and ϕ̃(s). This would have the effect of making the X s term
smaller. Along the way we pick up contributions of the form Xρ Ress=ρ ϕ̃(s)D(s) where ρ ranges
over the poles of D(s). We are therefore motivated to investiate analytical continuation of D(s) as
far to the left as possible.

Why use a smooth cutoff? Suppose we took ϕ(x) = 1[0,1]. Then ϕ̃(s) = 1
s , and the integral∫

D(s)X s ds
s may only converge conditionally.

3.1.3. Estimating a sharp cutoff: Multiplicative smoothing (Lecture 19, 29/2/2016). De-
fine ( f ?g)(x) =

∫
∞

y=0 f (y)g
(

x
y

)
dy
y (Multiplicative convolution). Then in the region of absolute

convergence,

(̃ f ?g)(s) =
∫

∞

0
xs dx

x

∫
∞

y=0
f (y)g

(
x
y

)
dy
y

=
∫

∞

y=0
ys f (y)

dy
y

∫
∞

x=0

(
x
y

)s

g
(

x
y

)
dx
x

= f̃ (s)g̃(s) .

Let ψH(x) = Hη (H logx) for some positive test function η ∈ C∞(R) supported in [−1,1] and
integrating to 1. Here H = H(x) is the scale of the cutoff (we may take, for example, H = xε for
some 0 < ε < 1).

Let ϕH = ψH ?1[0,1] so that ϕH ∈C∞
c (R) with ϕH(x) = 1 for x≤ e−1/H , ψH(x) = 0 for x≥ eH ,

and 0≤ ψH(x)≤ 1 in between. It follows that

(3.1.1)

∣∣∣∣∣ ∞

∑
n=1

anϕδ

( n
X

)
− ∑

n≤X
an

∣∣∣∣∣≤ ∑
e−1/HX≤n≤e1/HX

|an| .

Turning to the Mellin tranform, we have (with ψ = ψ1) that

ψ̃δ (s) =
∫

∞

0
Hη (H logx)xs dx

x
x=y1/H

=
∫

∞

0
η(logy)ys/H dy

y
= ψ̃

( s
H

)
,

so that

ϕ̃H(s) =
1
s

ψ̃

( s
H

)
.

LEMMA 111. We have ψ̃H(0) = 1, and

ψ̃H(s) =
∫
R

η(u)exp
{us

H

}
du ,

and in particular the estimates:
(1) For δ |s| bounded, ψ̃H(s) = 1+O

( s
H

)
.

(2) In the region |ℜ(s)| ≤ σ we have for each k ≥ 0 that

|ψ̃H(s)| �η ,k exp
{

σ

H

} Hk

|s|k
.
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PROOF. Setting x = eδu in the Mellin transform gives:

ψ̃H(s) =
∫

∞

−∞

η(u)exp
{us

H

}
du .

Integrating by parts k times we get

η̃H(s) = (−1)k Hk

sk

∫
∞

−∞

η
(k)(u)exp

{us
H

}
du ,

and taking absolute values we get

|η̃H(s)| ≤
Hk

|s|k
∫ +1

−1

∣∣∣η(k)(u)
∣∣∣exp

{
uℜ(s)

H

}
du

≤
∥∥∥η

(k)
∥∥∥

L1
exp
{

σ

H

} Hk

|s|k
.

�

COROLLARY 112. ϕ̃H(s) extends to a meromorphic function in C with a unique pole at s = 0,
Ress=0 ϕ̃H(s) = 1, and we have the esimate

ϕ̃H(s)� exp
{

σ

H

} Hk

|s|k+1

in |ℜs| ≤ σ . In particular, ϕ̃H decays rapidly in vertical strips away from its pole at s = 0, and the
Mellin inversion formula applies to it on any vertical line to the right of this pole.

Returning to our computation, the vertical decay gives us (for c large enough)
∞

∑
n=1

anϕH

( n
X

)
=

1
2πi

∫ c+i∞

c−i∞
ψ̃

( s
H

)
X sD(s)

ds
s
,

and hence

∑
n≤X

an =
1

2πi

∫ c+i∞

c−i∞
ψ̃

( s
H

)
X sD(s)

ds
s
+O

(
∑

e−1/HX≤n≤e1/HX

|an|
)

.

Suppose that |an| � nσac−1 and that D(s) continues to the left up to the line (σ), picking up a
pole at σac and finitely many other simple poles ρ . Then the error term is O

(
Xσac

H

)
and we have

∑
n≤X

an = ψ̃

(
σac

H

) Xσac

σac
Ress=σac D(s)+∑

ρ

ψ̃

(
ρ

H

) Xρ

ρ
Ress=ρ D(s)+

1
2πi

∫
(σ)

ψ̃

( s
H

)
X sD(s)

ds
s
+O(Xσac/H)

(if σ < 0 there need also be a contribution from the pole at s = 0). Using our Taylor expansion for
ψ̃ , we can write this as

∑
n≤X

an =
Ress=σac D(s)

σac
Xσac +∑

ρ

Ress=ρ D(s)
ρ

Xρ +
1

2πi

∫
(σ)

ψ̃

( s
H

)
X sD(s)

ds
s
+O(Xσac/H) .

Now say |D(σ + it)| � (1+ |t|)K . Supposing σ 6= 0, we can instead write this bound as
O
(
|s|K
)

. The integral is then bounded above by

Xσ

∫
ℜ(s)=σ

∣∣∣ψ̃ ( s
H

)∣∣∣ |s|K−1 |ds| � Xσ Hk exp(
σ

H
)
∫

ℜ(s)=σ

|s|K−1−k |ds|
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We thus get, for k > K, that

∑
n≤X

an =
Ress=σac D(s)

σac
Xσac +∑

ρ

Ress=ρ D(s)
ρ

Xρ +O(Xσac/H)+O
(

HkXσ

)
.

The minimum is when H = X
σac−σ

k+1 so we have for any k,

THEOREM 113. Suppose that an� nσac−1, that D(s) = ∑n≥1 ann−s continues to a meromor-
phic function with pole at σac and finitely many more poles in {σ < ℜ(s)< σac} where σ 6= 0.
Suppose that |D(σ + it)| � |t|K and let k > K. Then

∑
n≤X

an =
Ress=σac D(s)

σac
Xσac +∑

ρ

Ress=ρ D(s)
ρ

Xρ +O
(

Xσac−σac−σ

k+1

)
(where if σ < 0 there is the additional term D(0)).

3.1.4. Convergence of Dirichlet series (Proofs in PS3). Given an arithmetical function{an}∞

n=1⊂
C get the Dirichlet series D(s) = ∑n≥1 ann−s (generating function for multiplicative convlution).
Let R⊂ C be its domain of convergence, Ra be its domain of absolute convergence.

LEMMA 114. R is non-empty iff |an|= O(nT ) for some T .

PROPOSITION 115 (Domain of convergence). Fix s0 = σ0 + it0 ∈ C
(1) Suppose D(s) converges absolutely at s0. Then it converges absolutely in the half-plane
{ℜ(s)≥ σ0}, uniformly absolutely in any half-plane {ℜ(s)> σ0 + ε}.

(2) Suppose D(s) converges at s0. Then it converges in the half-plane {ℜ(s)> σ0}, uniformly
in any half-plane {ℜ(s)> σ0 + ε}. Furthermore, it converges absolutely in ℜ(s)> σ0 +
1.

COROLLARY 116. Suppose R is non-empty. Then the interiors of R and Ra are half-planes
{σ > σc} ⊃ {σ > σac}.

DEFINITION 117. σc,σac are called the abcissas of convergence and absolute convergence,
respectively.

EXAMPLE 118. The abcissa of convergence and absolute convergence of ζ (s) = ∑n≥1 n−s

is clearly σc = 1. The function blows up there by the MCT since ∑n≥1 n−1 = ∞. But ζ (s) =
∏p (1− p−s)

−1 and each individual factor is regular at s = 1 (the poles are at 2πi log pZ). We
conclude that there are infinitely many primes.

We can show a little more by elementary means. Let D(s) = ∑
∞
n=1(−1)nn−s. This converges

for σ > 0 by Dirichlet’s criterion, hence for ℜ(s) > 0. For ℜ(s) > 1 we have D(s) + ζ (s) =
2∑

∞
k=1(2k)−s = 2 · 2−sζ (s). It follows that ζ (s) = − D(s)

1−21−s on ℜ(s) > 1, showing that ζ (s) con-
tinues meromorphically to ℜ(s) > 0. At s = 1 1

1−21−s has a simple pole wtih residue − 1
log2 , and

D(1) = ∑
∞
n=1

(−1)n

n = − log2 6= 0 so ζ (s) has a simple pole at s = 1 with residue 1. We will later
see that ζ (s) is regular at 1+ it, t 6= 0 so the other singularities of D(s)

1−21−s are removable.
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3.2. Counting primes with the Riemann zetafunction (Lecture ??, 2/3/2016)

After Gauss it is natural to count primes with the weight log p. Riemann pointed out it is better
to count with with von Mangolt function.

Consider the logarithmic derivative

−ζ ′(s)
ζ (s)

= ∑
p

d
ds

log
(
1− p−s)= ∑

p
log p

p−s

1− p−s = ∑
p

∞

∑
m=1

log p
pms

= ∑
n≥1

Λ(n)n−s .

The latter series converges absolutely for ℜ(s)> 1. Thus, for c > 1,
∞

∑
n=1

Λ(n)ϕ
( n

X

)
=− 1

2πi

∫
(c)

ζ ′(s)
ζ (s)

ϕ̃(s)X s ds .

We have already seen that ζ (s) continues meromorphically to ℜ(s) > 0, with a unique pole at
s = 1. Recall, however, that the logarithmic derivative has a pole at every zero and pole of the
original function, with residue equal to the order. Thus, shifting formally to some c′ < 1, and
assuming there are no zeroes on the line ℜ(s) = c′ itself, we formally:

∞

∑
n=1

Λ(n)ϕ
( n

X

)
= ϕ̃(1)X− ∑

ζ (ρ)=0
ϕ̃(ρ)Xρ − 1

2πi

∫
(c′)

ζ ′(s)
ζ (s)

ϕ̃(s)X s ds .

The first term is the desired main term, conjectured by Gauss. Assuming ζ ′(s)
ζ (s) does not grow too

fast, the last term is clearly an error term. The problem is with the term in the middle – we have no
idea where the zeros are, or how many there are. If ℜ(ρ) is close to one (perhaps equal to one) or
if they are very dense , these “error terms” could overwhelm the main term. In the next parts we
first analytically continue ζ (s) to all of C, allowing us to take c′ to −∞. We then establish enough
about the zeroes to prove the Riemann’s formula above. We then improve our control on the zeroes
(obtaining the “zero free region”) to obtain the Prime Number Theorem.

3.2.1. Analytical continuation of the Riemann zetafunction. For even ϕ ∈S(R) set ϕ(rZ)=
∑n∈Zϕ(rn)−ϕ(0). This decays faster than any polynomial at infinity, and grows at most like r−1

as r→ 0. It follows that the Mellin transform

Z (ϕ;s) =
∫

∞

0
ϕ (rZ)rs dr

r
converges absolutely for ℜ(s) > 1. In that domain we may exchange summation and integration
to get

Z (ϕ;s) = 2ζ (s)ϕ̃(s) .
Since ϕ̃(s) can be chosen entire (say if ϕ is compactly supported away from 0),to meromorphically
continue ζ (s) it is enough to continue Z (ϕ;s).

PROPOSITION 119. Z(ϕ;s) extends (AC) to a meromorphic function in C, (BVS) bounded in
vertical strips, satisfying (FE) the functional equation

Z(ϕ;s) = Z(ϕ̂;1− s)

and with simple poles at s = 0,1 where the residues are −ϕ(0), ϕ̂(0) respectively.
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PROOF. Calculation, using Poisson sum:

Z(ϕ;s) =
∫

∞

0
ϕ(rZ)rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
+
∫ 1

0

[
∑
n∈Z

ϕ(rn)

]
rs dr

r
−ϕ(0)

∫ 1

0
rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫ 1

0

[
∑
n∈Z

ϕ̂(r−1n)

]
rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫

∞

1

[
∑
n∈Z

ϕ̂(rn)

]
r1−s dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫

∞

1
ϕ̂(rZ)r1−s dr

r
− ϕ̂(0)

1− s
.

�

Now let ϕ(x)= e−πx2
. Then ϕ̂ =ϕ and ϕ̃(s)=

∫
∞

0 e−πx2
xs dx

x =
∫

∞

0 e−t ( t
π

)s/2 1
2

dt
t = 1

2π−s/2Γ
( s

2

)
.

DEFINITION 120. ΓR(s) = π−s/2Γ
( s

2

)
.

COROLLARY 121. Let ξ (s) = ΓR(s)ζ (s). Then ξ (s) has AC, BVS, the FE

ξ (s) = ξ (1− s)

and with poles at s = 0 (residue −1) and at s = 1 (residue 1). Moreover, ζ (k) = 0 for k ∈ −2Z≥1.

THEOREM 122. ζ (s) itself is polynomially bounded in vertical strips.

PROOF. For ℜ(s)≥ σ > 1, ζ (s) is uniformly bounded by absolute convergence. By the func-
tional equation,

ζ (1− s) =
ΓR(s)

ΓR(1− s)
ζ (s) .

Stirling’s approximation shows:

ℜ logΓR (σ + it) = − s
2

logπ +
s−1

2
log

s
2
− s

2
+

1
2

log(2π)+O
(

1
t

)
= C(σ)+

(
σ −1

2

)
ℜ logs− t

2
ℑ log

σ + it
2

+O
(

1
t

)
= C(σ)+

(
σ −1

2

)
log

(
t

√
1+

σ2

t2

)
− t

2
arccos

(
σ

t
· 1√

1+(σ/t)2

)
+O(

1
t
)

= C(σ)+
σ −1

2
log t− t

2

[
π

2
− σ

t
+O(

1
t2 )

]
+O(

1
t
)

= C(σ)+
σ −1

2
log t− πt

4
+O

(
1
t

)
.

In other words,

ΓR(σ + it) =C(σ) |t|
σ−1

2 e−
π

4 |t|
(

1+O
(

1
t

))
.
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Note that the exponential decay term is independent of σ . Thus for s = σ + it with σ > 1 we have

ζ (1− s) =
C(σ)

C(1−σ)
|t|

σ−1
2 −

(1−σ)−1
2

(
1+O

(
1
t

))
ζ (s)

� |t|σ−
1
2 .

Finally, we apply Phragmen–Lindelöf. �

COROLLARY 123. ξ (s) is of order 1.

PROOF. By FE enough to check for σ ≥ 1
2 . There ΓR(s) satisfies the bound by Stirling, and

ζ (s) grows at most polynoimally as we saw above. �

3.2.2. Functions of finite order.

DEFINITION 124. Call an entire function f of order≤ α if | f (z)| �ε exp
(
|z|α+ε

)
. The order

is the least α for which this holds.
Call a meromorphic function of order≤ α if it is of the form f

g where f ,g are entire of order≤
α .

LEMMA 125. The set of entire functions of order≤ α (or finite order) is an algebra; the corre-
sponding sets of meromorphic functions are divison algebras.

LEMMA 126 (Jensen’s formula). Let f be holomorphic in |z| < R, continuous in the closed
ball, and non-vanishing on the circle and at the origin. Then

1
2π

∫ 2π

0
log
∣∣∣ f (Reiθ

)∣∣∣dθ = log | f (0)|+ ∑
f (zk)=0

log
R
|zk|

where the sum is over the zeroes in the ball, counted with multiplicity.

PROOF. Write f (z) = g(z)∏
n
k=1 (z− zk) with g non-vanishing. Then the formula holds for g

since log |g(z)| is harmonic, and for z− zk by direct calculation. �

COROLLARY 127. Let f have order≤α , and let {zk}∞

k=1 enumerate its zeroes. Then ∑
∞
k=1 |zk|−β

converges for any β > α .

PROOF. log
∣∣ f (Reiθ )

∣∣ < Rα+ε for R large enough. By the maximum principle also | f (0)| ≤
Rα+ε and hence

∑
f (zk)=0

R/2≤|zk|<R

log2≤ ∑
f (zk)=0

0<|zk|<R

log
R
|zk|
≤ 2Rα+ε

so the number of zeroes of f of magnitude between R
2 and R is at most 2Rα+ε

log2 . Thus, ignoring the
finite contributions small radii,

∞

∑
k=1
|zk|−β ≤ C+

∞

∑
n=N

∑
2n≤|zk|<2n+1

|zk|−β ≤C+
∞

∑
n=N

2−βn ·2 ·
(
2n+1)α+ε

�
∞

∑
n=N

2−(β−α−ε)n .

Now choosing ε small enough so that α + ε < β solves the problem. �
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THEOREM 128 (Hadamard factorization). Let f have order≤ α , with zeros {zk}∞

k=1 excepting
possibly zero. Then for some polynomial g of degree≤ α ,

f (z) = eg(z)ze
∞

∏
k=1

(
1− z

zk

)
exp

{
∑

1≤m≤α

1
m

(
z
zk

)m
}

.

COROLLARY 129. We have the product representation

(3.2.1) s(s−1)ξ (s) = eBs
∏

ξ (ρ)=0

(
1− s

ρ

)
es/ρ ,

where ρ runs over the zeroes of ξ (s), which all occur in the critical strip.

PROOF. Applying the theorem gives this except the initial exponential is eA+Bs. s(s−1)ξ (s)−−→
s→1

Ress=1 ξ (s) = 1 so by the FE the function has the value 1 at 0, and eA = 1. �

3.2.3. Counting zeroes. Taking the logarithmic derivative of (3.2.1) gives:

(3.2.2) − ζ ′

ζ
(s) =

1
2

Γ′

Γ
(

s
2
)− 1

2
logπ−B+

1
s
− 1

1− s
−∑

ρ

(
1

s−ρ
+

1
ρ

)
.

It will be useful to recall the Stirling’s approximation for the digamma function:

z(s) def
=

Γ′(s)
Γ(s)

= logs− 1
2s

+Oδ

(
|s|−2

)
,

valid in any cone |arg(s)| ≤ π−δ (for proof see PS0).

LEMMA 130. Let ρ = β + iγ run through the zeroes. Then as T → ∞,

∑
ρ

1

4+(T − γ)2 = O(logT ) .

PROOF. Setting s = 2+ iT in (3.2.2), we have z
( s

2

)
= O(logT ) by Stirling’s formula, so

−ℜ
ζ ′

ζ
(s) = O(logT )−ℜ∑

ρ

(
1

s−ρ
+

1
ρ

)
.

Next, −ζ ′

ζ
(s) = ∑n≥1 Λ(n)n−s is uniformly bounded in any halfplane σ ≥ 1+ ε , so we get

ℜ∑
ρ

(
1

s−ρ
+

1
ρ

)
= O(logT ) .

Finally, ℜ
1
ρ
= β

|ρ|2
> 0 and ℜ

1
s−ρ

= 2−β

|s−ρ|2
> 0 (0≤ β ≤ 1), so each term in the series is positive.

Specifically,

ℜ
1

s−ρ
=

2−β

(2−β )2 +(T − γ)2 ≥
1

4+(T − γ)2 ,

and the claim follows. �

COROLLARY 131. N(T +1)−N(T −1) = O(logT ), and ∑|γ−T |>1
1

(T−γ)2 = O(logT ).
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Next, let T be large and let−1≤ σ ≤ 2. Subtracting (3.2.2) evaluated at s = σ + iT,2+ iT we
get

ζ ′(s)
ζ (s)

= O(1)+∑
ρ

(
1

s−ρ
− 1

2+ iT −ρ

)
,

since z
(

σ+iT
2

)
−z

(2+iT
2

)
= O(1). Now for ρ with γ /∈ (T −1,T +1), we have∣∣∣∣ 1

s−ρ
− 1

2+ iT −ρ

∣∣∣∣≤ 2−σ

|s−ρ| |2+ iT −ρ|
≤ 3

|γ−T |2

and for ρ with γ ∈ (t−1, t +1) we have
∣∣∣ 1

2+iT−ρ

∣∣∣≤ 1
|2−β | ≤ 1. We have shown:

LEMMA 132. Let s = σ + iT , σ ∈ [−1,2]. Then

ζ ′(s)
ζ (s)

= ∑
γ∈(T−1,T+1)

1
s−ρ

+O(logT ) .

COROLLARY 133. For each T > 2 there exists T ′ ∈ [T,T + 1] such that for s = σ + iT ′, σ ∈
[−1,2] we have

ζ ′(s)
ζ (s)

= O(log2 T ′) .

PROOF. There are O(logT ) zeroes with γ ∈ [T,T +1]. In particular, there is a gap of length
O( 1

logT ) there, and we can choose T ′ in the middle of the gap. Then |γ−T ′| � 1
logT for all zeroes

of the zetafunction, so that∣∣∣∣ζ ′ζ (σ + iT ′)
∣∣∣∣� (N(T ′+1)−N(T ′−1)

)
O(logT )+O(logT ′) = O(log2 T ′) .

�

THEOREM 134. N(T ) = T
2π

log T
2π
− T

2π
+O(logT ).

PROOF. Suppose T is not the ordinate of any zero, and let R be the rectangle [−1,2]× [−T,T ].
We need to calculate the real number

2N(T )−2 =
1

2πi

∮
∂R

ξ ′(s)
ξ (s)

ds .

Since ξ (s̄) = ξ (s) and by the functional equation ξ (1− s) = ξ (s), it is enough to consider the
quarter-rectangle 2→ 2+ iT → 1

2 + iT . Recall that ξ (s) = π−s/2Γ
( s

2

)
ζ (s). The argument of

π−s/2 changes exactly by −1
2T logπ . The argument of Γ

( s
2

)
changes by ℑ logΓ

(1
4 +

1
2 iT
)
=

T
2 log

(T
2

)
− π

8 −
T
2 +O(T−1). It remains to estimate the change S(T ) in argζ (s). Since ℜ(ζ (2+

it)) ≥ 1−∑
∞
n=2

1
n2 > 0, the change of argument in [2,2+ iT ] is at most π . On

[1
2 + iT,2+ iT

]
Lemma 132 gives:

ζ ′(s)
ζ (s)

= ∑
γ∈(t−1,t+1)

(log(s−ρ))′+O(logT ) .
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Now the change of the argument of each s−ρ on the interval is at most π

2 , so the total change in
the argument of ζ (s) is O(logT ). In summary, we have:

2
1
4

2πN(T ) =
T
2

log
(

T
2

)
− T

2
logπ− T

2
+O(logT ) .

�

REMARK 135. Note that the “main” term came from the argument of ΓR(s), the “error term”
from the argument of ζ (s), despite the zeroes being those of ζ (s). The reason is the functional
equation, which is symmetrical only for ξ (s). In the left half of the rectangular path, the argument
of ζ (s) will change considerably (note that ζ (1− s) 6= ζ (s)!).

The functional equation connects the zeroes ρ,1−ρ and hence zeroes with opposite imaginary
parts, showing that indeed R contains 2N(T ) zeroes. The real-on-the real axis relation ξ (s̄) = ξ (s)
shows that the zeroes are symmetric about the critical line. In particular, a zero slightly off the line
must have a “partner” on the other side, and so a numerical countour integral argument can prove
that a suspected simple zero is exactly on the line rather than off it. Of course, a double zero would
be indistinguishable from two off-the-line zeroes, but no such double zero has ever been found,
and conjecturally they don’t exist.

REMARK 136. A more precise version of the Theorem is

N(T ) =
T
2π

log
T
2π
− T

2π
+

7
8
+S(T )+O(T−1) .

• This is easy to prove (just keep track of the constant term in the Stirling approximation
and of the contribution of the two poles).
• To see that this is significant note that (Littlewood)∫ T

0
S(t)dt = O(logT ) ,

showing massive cancellation. It is clear that the term 7
8 is significant when averaging the

rest of the formula.
• This is important in numerical calculation of the zeroes: suppose we missed a zero be-

tween [0,T −O(logT )]. Then
∫ T

0 N(t)dt will be small by O(logT ). But the RHS can be
calculated to that precision.

Now let N0(T ) denote the number of zeroes 1
2 + iγ , 0 ≤ γ ≤ T . Hardy–Littlewood shows that

N0(T )� T . This was improved:

THEOREM 137. Let κ = liminfT→∞
N0(T )
N(T ) , κ∗ similar for simple zeroes. Then:

(1) (Selberg 1942) κ > 0.
(2) (Levinson 1974) κ > 34.74%
(3) (Heath–Brown 1979) κ∗ > 34.74%
(4) (Conrey 1989) κ > 40.88%, κ∗ > 40.13%
(5) (Bui–Conrey–Young 2012) κ ≥ 41.05%, κ∗ ≥ 40.58%
(6) (Feng 2012) κ ≥ 41.28%

THEOREM 138. (Zero density estimate)
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3.2.4. A smooth cutoff. Let η ∈C∞
c (R) be positive, supported in [−1,1] and such that

∫
Rη =

1. For H > 0 set ηH(x) = Hη (H logx), and let ϕH = ηH ∗1[0,1] (multiplicative convolution), a
smooth function on R×>0. Then ϕ̃H(s) = η̃H(s)1̃[0,1](s). The second integral is 1

s so that

ϕ̃H(s) =
1
s

η̃H(s) .

3.2.5. The explicit formula.

LEMMA 139. For σ ≤−1 we have ζ ′(s)
ζ (s) = O(log |s|).

PROOF. By the duplication formula,

ζ (1− s) = 21−s
π
−s cos

(
πs
2

)
Γ(s)ζ (s)

and hence
ζ ′(1− s)
ζ (1− s)

=−1
2

π tan
(

πs
2

)
+

Γ′(s)
Γ(s)

+
ζ ′(s)
ζ (s)

.

Now if σ ≥ 2 the last term is O(1), the second term is O(log |s|) = O(log |1− s|) and if 1− s is
away from the trivial zeroes, then the first term is O(1) as well. �

PROPOSITION 140. Let U ≥ 1 not be an even integer. Then

∑
n≤x

Λ(n)+O(
x logx

H
)= x−∑

ρ

η̃H(ρ)
xρ

ρ
− ζ ′(0)

ζ (0)
+ ∑

2m<U
η̃H(−2m)

x−2m

2m
− 1

2πi

∫
(−U)

ζ ′(s)
ζ (s)

η̃H(s)xs ds
s
.

PROOF. In Section 3.1.2 we obtained the formula:
∞

∑
n=1

Λ(n)ϕH

(n
x

)
=− 1

2πi

∫
(2)

ζ ′(s)
ζ (s)

ϕ̃H(s)xs ds .

On the left-hand-side, ϕH
(n

x

)
= 1 if n ≤ x, ϕ̃H

(n
x

)
= 0 if n ≥ xe1/H = x + O( x

H ) and for
x≤ n≤ x+O( x

H ) we have Λ(n)ϕH(
n
x )≤ logx, so

LHS = ∑
n≤x

Λ(n)+O
(

x logx
H

)
.

On the RHS we would like to shift the contour to the line (−U). For this, let T not be the
height of a zero and let RT = [−U,2]× [−T,T ]. By the Residuum Theorem,

1
2πi

∮
∂RT

(
−ζ ′(s)

ζ (s)

)
ϕ̃H(s)xs ds = ϕ̃H(1)x− ∑

|γ|<T
ϕ̃H(ρ)xρ − ζ ′(0)

ζ (0)
− ∑

2m<U
ϕ̃H(−2m)x−2m .

Thus

− 1
2πi

∫ 2+iT

2−iT

ζ ′(s)
ζ (s)

ϕ̃H(s)xs ds = x− ∑
|γ|<T

η̃H(ρ)
xρ

ρ
− ζ ′(0)

ζ (0)
+ ∑

2m<U
η̃H(−2m)

x−2m

2m
− 1

2πi

∫
(−U)

ζ ′(s)
ζ (s)

ϕ̃H(s)xs ds

+R1(T )+R2(U,T )
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where R1(T ) represents the integral over [−1,2]×{±T}, R2(U,T ) the integral over [−U,−1]×
{±T} . Let T be on of the heights guaranteed by Corollary 133. Then

R1(T ) �
∫ 2+iT

−1+iT

[
log2 T

][
exp
{

2
H

}
Hk

T k+1

][
x2]ds

� x2Hk exp
{

2
H

}
log2 T
T k+1 .

For the rest of the integration we use the bound
∣∣∣ζ ′

ζ
(s)
∣∣∣� log |s| of Lemma 139 to get

R2(U,T ) �
∫ −1+iT

−U+iT
[log |s|]

[
exp
{

U
H

}
Hk

|s|k+1

][
x−1]ds

� Hk exp
{

U
H

}
U
x

logU + logT
|T |k+1 .

Now letting T → ∞ we see R1(T ),R2(U,T )→ 0. The superpolynomial decay of ϕ̃H(s) along
vertical lines shows that the vertical integrals converge to the intergrals alone (2), (−U) respec-
tively. �

REMARK 141. By the FE, −ζ ′(0)
ζ (0) = log(2π).

COROLLARY 142 (von Mangoldt’s explicit formula). Interpreting the sum over the zeroes
symmetrically, we have

∑
n≤x

Λ(n) = x−∑
ρ

xρ

ρ
− ζ ′(0)

ζ (0)
− 1

2
log(1− x−2) .

PROOF. We take H = U → ∞ in the proposition. The LHS is fine. The last term on the RHS
reads:

− 1
2πi

∫
(−U)

ζ ′(s)
ζ (s)

η̃H(s)xs ds
s
�

∫ +∞

−∞

log |H + iT |exp
{

U
H

}
Hk

|H + iT |k+1 x−H dT

� x−H
∫ +∞

0

logH + log |1+ iT |
|1+ iT |k

dT

� x−H logH .

We need to show:

lim
H→∞

∑
ρ

η̃H(ρ)
xρ

ρ
= lim

T→∞
∑
|γ|<T

xρ

ρ

and

lim
H→∞

∑
2m<H

η̃H(−2m)
x−2m

2m
=

1
2

∞

∑
m=1

x−2m

m
=−1

2
log
(
1− x−2) .

For the second claim, we have

∑
ρ

η̃H(ρ)
xρ

ρ
= ∑

ρ

η̃1(
ρ

H
)
xρ

ρ
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For the third claim, if 2m < H we have
∣∣∣η̃H(−2m)x−2m

2m

∣∣∣≤ exp
{(2m

H

)} x−2m

2m ≤ e x−2m

2m and we are
done by the bounded convergence theorem. �

PROPOSITION 143. Let β (T ) be such that if |γ|< T then β ≤ β (T ). We then have

|ψ(x)− x| � log2 T · xβ (T )+
x logx

H
+

xH logT
T

.

PROOF. In the previous proposition take U = 1. Then the U integral reads

− 1
2πi

∫
(−U)

ζ ′(s)
ζ (s)

η̃H(s)xs ds
s
� x−1H exp

{
1
H

}∫ +∞

−∞

log |1+ it|
|1+ it|2

dt .

Since the zero density is about log t at height t, and since η̃H(ρ)� 1, we can bound ∑|γ|<T η̃H(ρ)
xρ

ρ

by xβ (T ) ∫ T
1

log t
t dt = log2 T · xβmax.. Similarly,

∣∣∣∑|γ|>T η̃H(ρ)
xρ

ρ

∣∣∣ is bounded by

x
∫

∞

T

H
t

log t dt
t
� xH logT

T
.

�

THEOREM 144 (Prime Number Theorem). Suppose, further, that every zero have β ≤ 1− c
logγ

.
Then

|ψ(x)− x| � xexp
{
−c′
√

logx
}
.

On RH we have
ψ(x) = x+O(

√
x logx) .

PROOF. On RH we have
√

x log2 T +
x logx

H
+

xH logT
T

can take H =
√

x, T = x2. �

With zero-free region get bound

x log2 T exp
{
−c

logx
logT

}
+

x logx
H

+
xH logT

T

and taking T = exp
{

c1(logx)1/2
}

, H = exp
{

c2
√

logx
}

with c1 > c2 works.
3.2.5.1. Proof from Iwaniec–Kowalski. We have

∑
n

Λ(n)ϕH

(n
x

)
=

1
2πi

∫
(2)

(
−ζ ′

ζ
(s)
)

η̃H(s)xs ds
s
.

Shift to the contour 1−σ = c
log(|t|+2) . We pick up the pole, but not zeroes, and get

∑
n≤x

Λ(n)+O
(

x logx
H

)
� x

∫
∞

0
(log(|t|+2)) η̃H

(
1− c

log(|t|+2)
+ it
)

x−c/ log(|t|+2) dt
|t|+2
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3.2.6. The zero-free region.

LEMMA 145 (Hadamard / de la Vallée Poussin; argument due to Mertens). ζ (1+ it) 6= 0 if
t 6= 0.

PROOF. For s = σ + it, σ > 1 have logζ (s) = ∑p ∑
∞
m=1 m−1 p−mσ p−mit so that

ℜ logζ (s) = ∑
p

∞

∑
m=1

m−1 p−mσ cos(t log pm) .

Using 2(1+ cosθ)2 = 3+4cosθ + cos2θ ≥ 0, get

3 logζ (σ)+4ℜ logζ (σ + it)+ℜ logζ (σ +2it)≥ 0 ,

that is
ζ

3(σ)
∣∣ζ 4(σ + it)ζ (σ +2it)

∣∣≥ 1 .

Letting σ → 1, suppose ζ (σ + it) = 0. Then ζ (σ +2it) must be a pole, lest ζ 3(s)ζ 4(s+ it)ζ (σ +
2it) vanish there. �

THEOREM 146. If ζ (β + iγ) = 0 then β < 1− c
logγ

.

PROOF. The same identity shows

−3
ζ ′

ζ
(σ)−4ℜ

ζ ′

ζ
(σ + it)−ℜ

ζ ′

ζ
(σ +2it)≥ 0 .

Now −ζ ′

ζ
(σ)≤ 1

σ−1 +A (pole!), and we know

−ℜ
ζ ′

ζ
(s)< A log t−∑

ρ

ℜ

(
1

s−ρ
+

1
ρ

)
where each summand is positive. In particular, −ℜ

ζ ′

ζ
(σ + 2it) ≤ A log t. Setting t = γ we have

s−ρ = σ −β so

−ℜ
ζ ′

ζ
(σ + iγ)≤ A log t− σ −β

|s−ρ|2
= A log t− 1

σ −β
.

It follows that
3

σ −1
+3A+4A log t− 4

σ −β
+A log t ≥ 0

so
4

σ −β
≤ A logγ +

3
σ −1

.

Take σ = 1+ c
A logγ

. Then 4
σ−β
≤ (1+ 3

c )A logγ so 1+ 3c
A logγ

−β ≤ 4
(1+ 3

c)A logγ
so

1−β ≤

(
4

1+ 3
c

− c

)
1

A logγ
=

c(1− c)
(c+3)A

1
logγ

� 1
logγ

if 0 < c < 1. �
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3.3. The Prime Number Theorem in Arithmetic Progressions

Follow same scheme, using Dirichlet L-functions
(1) AC, FE, BVS
(2) ...

New features:
(1) The conductor q, and the analytic conductor q(s) = q · (|s+a|+3).
(2) The root number w.

3.3.1. Analytic continuation. From now until Section xxx we fix a primitive Dirichlet char-
acter χ mod q > 1. We have the Dirichlet series

L(s; χ) = ∑
n≥1

χ(n)n−s

convergent in ℜ(s)> 0, absolutely in ℜ(s)> 1. Define a ∈ {0,1} by χ(−1) = (−1)a.
For ϕ ∈ S(R) of the same parity as χ (ϕ(−x) = χ(−1)ϕ(x)) set

F(χ;ϕ;r) = ∑
n∈Z

χ(n)ϕ(rn) .

LEMMA 147 (Properties of F). (1) F(r) = F(χ;ϕ;r) decays rapidly as r→ ∞.
(2) F(χ;ϕ;r) = G(χ)

rq F(χ̄; ϕ̂; 1
rq).

(3) F(r)→ 0 rapidly as r→ 0.

PROOF. |F(r)| ≤ ∑n6=0 |ϕ(rn)|. The second claim is Poisson sum (see PS2), and the third
follows from the second. �

DEFINITION 148. Let
Z(χ;ϕ;s) =

∫
∞

0
F(χ;ϕ;r)rs dr

r
.

This converges absolutely for ℜ(s)> 0. For ℜ(s)> 1 we can change the order of summation
and integration and get:

Z(χ;ϕ;s) = 2
∞

∑
n=1

χ(n)n−s
ϕ̃(s) = 2L(s; χ)ϕ̃(s) .

We now break the integral in two:

Z(χ;ϕ;s) =
∫

∞

√
q

F(χ;ϕ;r)rs dr
r
+
∫ √q

0
F(χ;ϕ;r)rs dr

r

=
∫

∞

√
q

F(χ;ϕ;r)rs dr
r
+

G(χ)

q

∫ √q

0
F(χ̄; ϕ̂;

1
rq
)rs−1 dr

r

=
∫

∞

√
q

F(χ;ϕ;r)rs dr
r
+

G(χ)
√

q
q

1
2−s
∫

∞

√
q

F(χ̄; ϕ̂;r)r1−s dr
r
.

We have shown:

qs/2Z(χ;ϕ;s) = qs/2
∫

∞

√
q

F(χ;ϕ;r)rs dr
r
+

G(χ)
√

q
q

1−s
2

∫
∞

√
q

F(χ̄; ϕ̂;r)r1−s dr
r
.
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COROLLARY 149. Z(χ;ϕ;s) extends to an entire function.

Next, note that
∣∣∣G(χ)√

q

∣∣∣= 1 and F(χ; ˆ̂ϕ;r) = χ(−1)F(χ;ϕ;r). Thus:

q
1−s

2 Z(χ̄; ϕ̂;1− s) = q
1−s

2

∫
∞

√
q

F(χ̄; ϕ̂;r)r1−s dr
r
+

χ(−1)G(χ̄)
√

q
q

s
2

∫
∞

√
q

F(χ;ϕ;r)rs dr
r
,

and applying G(χ)G(χ̄) = qχ(−1) gives:

qs/2Z(χ;ϕ;s) =
G(χ)
√

q
q

1−s
2 Z(χ̄; ϕ̂;1− s) .

COROLLARY 150 (Non-symmetric FE).

L(s; χ) = G(χ)q−s
˜̂ϕ(1− s)

ϕ̃(s)
L(1− s; χ̄) .

We now make a specific choice: ϕa(x) = xae−πx2
. For a = 0 we have ϕ̂a(k) = ϕa(k). For

a = 1 we have ϕ̂a(k) =−iϕa(k). Also, ϕ̃a(s) = ϕ̃0(s+a) = ΓR(s+a) is nowhere zero and ˜̂ϕa(s) =
(−i)aϕ̃a(s). We conclude:

THEOREM 151. Let Λ(s; χ) = qs/2ΓR(s+a)L(s; χ). Then Λ(s; χ) extends to an entire function,
and satisfies the functional equation

Λ(s; χ) = wΛ(1− s; χ̄)

with the root number w = w(χ) = G(χ)(−i)a
√

q . Since qs/2ΓR(s+a) is nowhere zero, L(s; χ) extends
to an entire function. This has “trivial” zeroes at {a−2n | n≥ 1}.

Note that by the absolute convergence of the Euler product, L(s; χ) hence Λ(s; χ) has no zeroes
in ℜ(s)> 1 hence in ℜ(s)< 0.

3.3.2. The Hadamard product. In the right half-plane ℜ(s) > ε we have L(s; χ) bounded,
and qs/2,ΓR(s+ a) of order 1 (Stirling). Applying the FE we see that Λ(s; χ) is of order 1, and
therefore has the expansion

Λ(s; χ) = eA+B(χ)s
∏
ρ

(
1− s

ρ

)
es/ρ .

Taking the logarithmic derivative, we find:

Λ′

Λ
(s; χ) = B(χ)+∑

ρ

[
1

s−ρ
+

1
ρ

]
.

Now ℜB(χ) will contribute to the

B(χ) =
Λ′

Λ
(0; χ) =−Λ′

Λ
(1; χ̄) =−B(χ̄)−∑

ρ

[
1

1− ρ̄
+

1
ρ̄

]
.

Thus

2ℜB(χ) =−∑
ρ

[
1
ρ
+

1
ρ̄

]
=−2∑

ρ

ℜ
1
ρ
< 0 .
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Finally, we note that

(3.3.1) − L′(s; χ)

L(s; χ)
=

1
2

log
q
π
+

1
2

Γ′( s+a
2 )

Γ( s+a
2 )
−B(χ)−∑

ρ

[
1

s−ρ
+

1
ρ

]
.

and that 1
2 log q

π
+ 1

2
Γ′( s+a

2 )

Γ( s+a
2 )
≈ logq(s).

3.3.3. The zero-free region. Note that

−ℜ
L′(s; χ)

L(s; χ)
= O(logq(s))−ℜB(χ)−ℜ∑

ρ

[
1

s−ρ
+

1
ρ

]
= O(logq(s))−∑

ρ

σ −β

|σ −β |2 + |γ− t|2
.

In particular, if σ > 1 then for any single zero ρ ,

−ℜ
L′(s; χ)

L(s; χ)
≤ O(logq(s))− σ −β

|σ −β |2 + |γ− t|2

From the Euler product we have for s = σ + it with σ > 1 that

−L′(s; χ)

L(s; χ)
= ∑

n
χ(n)Λ(n)n−s = ∑

n

Λ(n)
nσ

(
χ(n)n−it) .

Applying Mertens’s identity again we get:

(3.3.2) −3
L′

L
(σ ,χ0)−4ℜ

L′

L
(σ + it,χ)−ℜ

L′

L
(σ +2it,χ2)≥ 0 .

Note that χ0 isn’t and χ2 need not be primitive, and that we may have χ2 = χ0. We first note that
if ψ is a Dirichlet character mod q, ψ1 its primitive counterpart then at σ > 1 their logarithmic
derivatives differ by at most

∑
p|q

log pp−σ

1− p−σ
≤∑

p|q
log p≤ logq .

It follows that our estimate

−ℜ
L′

L
(s;ψ1)≤ℜ

δψ1

s−1
+O(logq1(s))

also gives

−ℜ
L′

L
(s;ψ1)≤ℜ

δψ

s−1
+O(logq(s)) .

Applying this in (3.3.2) gives with s = σ + iγ , for the zero ρ = β + iγ gives:

3ℜ
1

s−1
− 4

σ −β
+ℜ

δχ2

σ +2it−1
+O(L )≥ 0

with L = logq(γ). Thus:

4
σ −β

≤ 3
σ −1

+ℜ
δχ2

σ +2it−1
+CL .
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Case 1. If χ2 is non-principal (“complex”), take σ = 1+ δ

L and get

1−β +
δ

L
≥ 4

3
δ
+C

1
L

so

1−β ≥
(

4δ

3+Cδ
−δ

)
1
L
� 1

L
.

Case 2. If χ2 = χ0, suppose γ ≥ δ

L and σ = 1+ δ

L . Then ℜ
1

σ+2it−1 = σ−1
|σ−1|2+4t2 ≤

L
5δ

. Then

4
σ −β

≤ 3L

δ
+

L

5δ
+CL

so

β < 1− 4−5Cδ

16+5Cδ

δ

L
.

In other words, we have our zero-free region for γ > δ

logq .
Now suppose χ is real. We need to study small zeroes. For this recall

−L′

L
(σ ; χ) = O(logq)−∑

ρ

1
σ −ρ

.

Now −L′
L (σ ; χ)≥−∑n Λ(n)n−σ = ζ ′

ζ
(σ) =− 1

σ−1 −O(1). Suppose two complex zeroes. Then

− 1
σ −1

−O(1)≤ O(logq)+
2(σ −β )

(σ −β )2 + γ2
.

For σ = 1+ 2δ

logq get |γ|< 1
2(σ −β ) so

− 1
σ −1

= O(logq)− 8
5(σ −β )

and if δ is small enough get β < 1− δ

logq . Same if two real zeroes.

THEOREM 152. There exists C such that if 0 < δ < C the only possible zero for L(s; χ) with
|γ| < δ

logq and β > 1− δ

logq is a single real zero, and this only if χ is real. In any case all zeroes

with |γ| ≥ δ

logq satisfy 1−β � 1
logq(γ) .

REMARK 153. Note that if χ is imprimitive, coming from primitive χ1 then L(s; χ) and L(s; χ1)
have same zeroes except for zeroes of Euler factors (1−χ(p)p−s) for p|q, and these are all on the
line ℜ(s) = 0, and we still obtain the conclusion of the Theorem.

REMARK 154. (Landau) Let χ1,χ2 be two quadratic characters. Then the Euler product
ζ (s)L(s; χ1)L(s; χ2)L(s; χ1χ2) has positive coefficients. From this can deduce that Siegel zeroes
are rare: at most one character mod q can have then, and the sequence of moduli supporting such
characters must satisfy qn+1 ≥ q2

n.
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3.3.4. Counting zeroes. We return to the formula

−ℜ
L′(s; χ)

L(s; χ)
= O(logq(s))−∑

ρ

σ −β

|σ −β |2 + |γ− t|2
.

Applying this with σ = 2, where
∣∣∣L′(s;χ)

L(s;χ)

∣∣∣≤ ∣∣∣ζ ′(2)
ζ (2)

∣∣∣, and using σ −β ≥ 1, we get:

(3.3.3) #{γ | |γ−T | ≤ 1}= O(logqT )

and

(3.3.4) ∑
|γ−T |>1

1
(T − γ)2 = O(logqT ) .

LEMMA 155. Let s = σ + iT , σ ∈ [−1,2]. Then

L′

L
(s; χ) = ∑

γ∈(T−1,T+1)

1
s−ρ

+O(logqT ) .

PROOF. Subtracting (3.3.1) evaluated at s = σ + iT,2+ iT we get

L′

L
(s; χ) = O(1)+∑

ρ

(
1

s−ρ
− 1

2+ iT −ρ

)
,

since z
(

σ+iT
2

)
−z

(2+iT
2

)
= O(1). Now for ρ with γ /∈ (T −1,T +1), we have∣∣∣∣ 1

s−ρ
− 1

2+ iT −ρ

∣∣∣∣≤ 2−σ

|s−ρ| |2+ iT −ρ|
≤ 3

|γ−T |2

and for ρ with γ ∈ (t−1, t +1) we have
∣∣∣ 1

2+iT−ρ

∣∣∣≤ 1
|2−β | ≤ 1. �

COROLLARY 156. For each T > 2 there exists T ′ ∈ [T,T + 1] such that for s = σ + iT ′, σ ∈
[−1,2] we have

L′

L
(s; χ) = O(log2 qT ′) .

PROOF. Same as Corollary 133. �

DEFINITION 157. Nχ(T ) counts zeroes of L(s; χ) up to height T .

THEOREM 158. Nχ(T ) = T
2π

log qT
2π
− T

2π
+O(logqT ).

PROOF. Suppose T is not the ordinate of any zero, and let R be the rectangle [−1,2]× [−T,T ].
We need to calculate the real number

2Nχ(T ) =
1

2πi

∮
∂R

Λ′

Λ
(s; χ)ds .

Since Λ(s̄; χ) = Λ(s; χ̄) and by the functional equation Λ(1− s; χ) = w(χ̄)Λ(s; χ̄), it is enough to
consider the quarter-rectangle 2→ 2+ iT→ 1

2 + iT . Recall that Λ(s; χ)= qs/2π−s/2Γ
( s+a

2

)
L(s; χ).

The argument of
( q

π

)s/2 changes exactly by 1
2T log q

π
. The argument of Γ

( s+a
2

)
changes by

ℑ logΓ
(1+2a

4 + 1
2 iT
)
= T

2 log
(T

2

)
− T

2 −
π

8 +
πa
4 +O(T−1). It remains to estimate the change S(T )
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in argζ (s). Since ℜ(L(2+ it; χ)) ≥ 1−∑
∞
n=2

1
n2 > 0, the change of argument in [2,2+ iT ] is at

most π . On
[1

2 + iT,2+ iT
]

Lemma 155 gives:

L′

L
(s; χ) = ∑

γ∈(t−1,t+1)
(log(s−ρ))′+O(logqT ) .

Now the change of the argument of each s−ρ on the interval is at most π

2 , so the total change in
the argument of ζ (s) is O(logqT ). In summary, we have:

2
1
4

2πNχ(T ) =
T
2

log
(

T
2

)
+

T
2

logq− T
2

logπ− T
2
+O(logqT ) .

�

Now get

Nχ(T ) =
T
2π

log
(

qT
2π

)
− T

2π
+O(logqT ) .

3.3.5. The explicit formula for L(s; χ).

LEMMA 159. For σ ≤−1 we have L′
L (s; χ) = O(logq|s|).

PROOF. By the duplication formula,

L(1− s; χ) = w(χ)21−s
π
−sqs− 1

2 cos
(

π(s−a)
2

)
Γ(s)L(s; χ̄)

and hence
L′

L
(1− s; χ) = logq− 1

2
π tan

(
π(s+a)

2

)
+

Γ′(s)
Γ(s)

+
L′

L
(s; χ̄) .

Now if σ ≥ 2 the last term is O(1), the third term is O(log |s|) = O(log |1− s|) and if 1− s is away
from the trivial zeroes, then the second term is O(1) as well. �

PROPOSITION 160. Let U ≥ 1 not be an even integer. Then

∑
n≤x

χ(n)Λ(n)+O(
x logx

H
) =−∑

ρ

η̃H(ρ)
xρ

ρ
+(1−a) logx+b(χ)− 1

2πi

∫
(−1)

L′

L
(s; χ)η̃H(s)xs ds

s
,

where b(χ) is the zeroes order term in the Laurent expansion of −L′
L (s; χ) at s = 0.

PROOF. More-or-less as before: we have

∑
n≤x

χ(n)Λ(n)+O(
x logx

H
) = ∑

n
χ(n)Λ(n)ϕH

(n
x

)
=

1
2πi

∫
(2)

L′

L
(s; χ)η̃H(s)xs ds

s
.

We now shift the contour to (−1), acquiring contributions from the poles of 1
s

L′
L (s; χ). These occur

at the zeroes of L(s; χ) (which itself has no poles), accounting for the terms η̃H(ρ)
xρ

ρ
, and at s = 0.

To understand the contribution of s = 0 we go back to the logarithmic derivative (3.3.1). If a = 1
this is regular at s = 0 and b(χ) = −L′

L (0; χ) (note that η̃H(0) = 1). If a = 0, however, Γ( s
2) has

pole at s = 0, and so does its logarithmic derivative, at which point the integrand has a double pole.
In that case near s = 0,

−L′

L
(s; χ) =

1
s
+b(χ)+O(s);

xs

s
=

1
s
+ logx+O(s) .
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Now,
d
ds

η̃H(s) =
d
ds

∫ +∞

−∞

η(u)exp
{us

H

}
du =

1
H

∫ +∞

−∞

uη(u)exp
{us

H

}
du .

In partiular, choosing since η symmetric we see that η̃ ′H(0) = 0 so that η̃H(s) = 1+O(s2) and the
residue of the integrand is logx+b(χ). �

We need to estimate b(χ).

LEMMA 161. We have
b(χ) = O(logq)+ ∑

|γ|<1

1
ρ
.

PROOF. Subtract (3.3.1) at s,2 and use −L′
L (2; χ) = O(1) and 1

2z( s+a
2 ) = 1−a

s +O(1) (O(1)
absolute) to get

−L′

L
(s; χ) =

1−a
s

+O(1)−∑
ρ

(
1

s−ρ
− 1

2−ρ

)
,

with the O(1) absolute. Now 1
ρ
+ 1

2−ρ
= 2

ρ(2−ρ) . In particular,
∣∣∣∑|γ|≥1

1
ρ
+ 1

2−ρ

∣∣∣� ∑|γ|>1
1
|γ|2
�

logq by (3.3.4). If |γ|< 1 then
∣∣∣ 1

2−ρ

∣∣∣= O(1) so ∑|γ|<1
1

2−ρ
= O(logq) by (3.3.3). �

PROPOSITION 162. Let β (T ) be such that if |γ| < T then β ≤ β (T ), except possibly for the
single real zero β0. We then have

ψ(x; χ)= ∑
n≤x

χ(n)Λ(n)�ψ(x; χ)�−xβ0

β0
+

[
x1/4 logx+ log2 qT · xβ (T )+

x logx
H

+
xH log(qT )

T
+

H logq
x

]
.

PROOF. The integral in the last Proposition satisfies:

− 1
2πi

∫
(−1)

L′

L
(s; χ)η̃H(s)xs ds

s
� x−1H exp

{
1
H

}∫ +∞

−∞

log(q|1+ it|)
|1+ it|2

dt .

Since the zero density is about logqt at height t, and since η̃H(ρ)� 1, we can bound ∑1<|γ|<T η̃H(ρ)
xρ

ρ

by

xβ (T )
∫ T

1

logqt
t

dt ≤ xβ (T )
∫ qT

1

log t
t

dt� log2(qT )xβ (T ) .

Similarly,
∣∣∣∑|γ|>T η̃H(ρ)

xρ

ρ

∣∣∣ is bounded by

x
∫

∞

T

H
t

log(qt)dt
t

� xH log(qT )
T

.

In summary so far, we have

ψ(x; χ)= ∑
|γ|<1

(
1
ρ
− xρ

ρ

)
+(1−a) logx+O(logq)+O(log2 qT ·xβ (T )+

x logx
H

+
xH log(qT )

T
+

H logq
x

) .

Now zeroes with β < 1− c
logq also have β > c

logq by the functional equation, except (if χ is
real) for a single pair of zeroes β0,1−β0, where we have β0 >

3
4 since can take c small and q≥ 3.

Thus 1
β0

is O(1). The sum over xρ

ρ
is O(log2 q)xβ (T ), so absorbed in the existing error terms. Also,

1−x1−β0
1−β0

= xσ logx for 0 < σ < 1−β0 <
1
4 and we get the claim. �
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THEOREM 163. For logq� (logx)1/2

ψ(x; χ) =−xβ0

β0
+O(xexp

{
−c′
√

logx
}
) .

On RH we have for q≤ x that
ψ(x; χ)�

√
x log2 x .

PROOF. On RH we have the bound

x1/4 logx+
√

x log2 qT +
x logx

H
+

xH log(qT )
T

+
H logq

x
.

Take T =
√

x, H = x. Then for x≥ q, the error term is
With zero-free region get bound

x log2 qT exp
{
−c

logx
logqT

}
+

x logx
H

+
xH logqT

T
+

H logq
x

.

Taking T = exp
{

c1(logx)1/2
}

, H = exp
{

c2 (logx)1/2
}

with c1 > c2 works if logq≤C(logx)1/2.
Finally, we note that if χ is a (possibly non-primitive) character mod q, with primitive associate

χ1 mod q1. Then

ψ(x; χ1)−ψ(x; χ) = ∑
pm≤x

p|q
p-q1

χ(pm) log p�∑
p|q

log p ∑
pm≤x

1� logq logx ,

which can be absorbed in our error terms in either case. Thus we may apply the theorem for
non-primitive characters as well. �

3.3.6. The PNT in APs. Averaging Theorem (163) over the group of characters, we find:

∑
x≥pm≡a(q)

log p =
1

ϕ(q) ∑
n≤x

χ̄(a)ψ(x; χ) =
x

ϕ(q)
+ error

where on the RH the error is O(x1/2 log2 x) for q ≤ x, and −χ(a)x−β0

ϕ(q)β0
+ O

(
xexp

{
−C
√

logx
})

unconditionally, if logq� (logx)1/2.

LEMMA 164. β0 ≤ 1− c
q1/2 log2 q

.

PROOF. Using h(d) ≥ 1 in the class number formula we get L(1; χ)� q−1/2. Now for 1−
c

logq ≤ σ ≤ 1 we have n−σ ≤ 1
n exp

{
c logn
logq

}
. Thus

q

∑
n=1

χ(n) logn
nσ

�
q

∑
n=1

logn
n
� log2 q .

Also, partial summation gives
∞

∑
q+1

χ(n) logn
nσ

�
∞

∑
q+1
|S(n)|

[
logn
nσ
− log(n+1)

(n+1)σ

]
� q1/2 logq

qσ
� logq .
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It follows that L′(σ ; χ)� log2 q for β ≤ σ ≤ 1. Then

q−1/2� L(1; χ) = L(1; χ)−L(β ; χ)� (1−β ) log2 q .

�

THEOREM 165 (PNT I). For q� (logx)1−δ we have

∑
x≥p≡a(q)

log p =
x

ϕ(q)
+O

(
xexp

{
−C
√

logx
})

.

PROOF. xβ0−1 ≤ exp
{
− logx

q1/2 logq

}
. �

COROLLARY 166. The first prime in an AP occurs before exp
(

q1+δ

)
.

Note that RH predicts q2+δ and probably q1+δ is enough.

THEOREM 167 (Siegel 1935). L(1; χ)≥C(ε)q−ε for some ineffective constant.

COROLLARY 168. Any exceptional zero has β ≤ 1− c(ε)
qε , and the error term holds for q�

(logx)A for A arbitrarily large. The first prime in an AP occurs before exp(qε).

3.3.7. Statement of Bombieri–Vinogradov.

DEFINITION 169. Let ψ(x;q,a) = ∑x≥n≡a(q)Λ(n).

We expect this to be about x
ϕ(q) +O(

√
x log2 x).

THEOREM 170 (Bombieri, Vinogradov 1965 [3, 11]). Given A > 0 and for x1/2 (logx)−A ≤
Q≤ x1/2 we have

1
Q ∑

q≤Q
max

(a,q)=1
max
y≤x

∣∣∣∣ψ(y;q,a)− y
ϕ(q)

∣∣∣∣� x1/2 (logx)5 .

CONJECTURE 171 (Elliott–Halberstam). Can take Q≤ xθ for θ < 1.

THEOREM 172 (Zhang 2013). Can take Q ≤ xθ for some θ > 1
2 if restrict q to be sufficiently

smooth.
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CHAPTER 4

Topics

4.1. The circle method: Waring problem (31/3/2014)

(Based on [8, §20.2])
Let f (x)∈Z[x] be an integer polynomial of degree k. For a ring R set Vf (R)= {x ∈ Rn | f (x) = 0}.

We’d like to estimate the size of Vf (Z)∩ [−X .X ]n, that is solve f (x) = 0 in a box.

THEOREM 173. Under appropriate hypotheses, we have

#Vf (Z)∩B =S fV f Xn−k+

The idea is to detect f (m) = 0 using
∫
R/Z e(αk)dα =

{
1 k = 0
0 k 6= 0

. Accordingly we fix a nice

set Ω⊂ Rn, set ΩX = X ·Ω and set

S(α) = ∑
m∈Zn∩ΩX

e(α f (m)) .

Then

#
(
Vf (Z)∩ΩX

)
=
∫ 1

0
S(α)dα .

In order to estimate S(α), consider first the case of rational α = a
q . Then e

(
a
q f (m)

)
only

depends on m mod q, so that

S(
a
q
) = ∑

u(q)
e
(

a
q

f (u)
)

#{x ∈ Zn∩ΩX | x≡ u(q)} .

Now integrating over α roughly corresponds to summing over a, 1
q ∑a(q) e

(
a
qk
)
=

{
1 k ≡ 0(q)
0 else

shows show the singular series arises. More precisely, α is not exactly rational.

LEMMA 174 (Dirichlet). Let P > 0, α ∈ R. Then there is 1 ≤ q ≤ P and a prime to q with∣∣∣α− a
q

∣∣∣≤ 1
qP .

PROOF. For each q choose a such that qα − a ∈ [0,1]. Then either for some q,a this num-
ber in

[
0, 1

P

]
and we are done, or the P numbers qα − a are in the P− 1 intervals

[ i
P ,

i+1
P

]
,

1 ≤ i ≤ P− 1. In the second case suppose q1α − a1,q2α − a2 are in the same interval. Then
|(q1−q2)α− (a1−a2)| ≤ 1

P and we are again done. �

Fixing P, approximate every α by a
q +β , |β | ≤ 1

qP . We divide in two cases
(1) “Major arcs”: q≤ Q;
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(2) “Minor arcs”: q > Q.
The “Major arcs” should contribute the mainterms. The “minor arcs” cover most of the circle R/Z
but are all error term.

Note that if a
q 6=

a′
q′ then

∣∣∣a
q −

a′
q′

∣∣∣= |aq′−a′q|
qq′ ≥ 1

qq′ . Thus if Q≤ P
2 , the major arcs are the disjoint

union M of the arcs M(a,q) =
[

a
q −

1
qP ,

a
q +

1
qP

]
. The “minor arcs” are the complement.

For α of the form a
q +β we have

S(α) = ∑
u(q)

e
(

a
q

f (u)
)

∑
m∈Zn∩ΩX

m≡u(q)

e(β f (m))

= q−n
∑
u(q)

e
(

a
q

f (u)
)

∑
m∈Zn∩ΩX

m≡u(q)

e(β f (m))qn .

Now note that the inner sum is a Riemann sum for the integral∫
ΩX

e(β f (x))dnx ,

with the domain discretized into cubes of size [0,q]n. Now β is small, so the integrand is roughly
constant and the the Rieman well-approximates the integral. Specifically,

∂

∂xi
e(β f (x)) = 2πiβ

∂ f
∂xi

(x)e(β f (x))

has size roughly βXk−1 since ∂ f
∂xi

is a polynomial of degree k. We have β ≤ 1
qP , so if P ∼ Xk−1

then the derivative is of order 1
q and f is roughly constant on the cube. We get

S(α)≈ q−n
∑
u(q)

e
(

a
q

f (u)
)∫

ΩX

e(β f (x))dnx .

It follows that∫
M

S(α)dα ≈ ∑
q≤Q

q−n
′

∑
a(q)

∑
u(q)

e
(

a
q

f (u)
)∫ +1/qP

−1/qP
dβ

∫
ΩX

e(β f (x))dnx .

Now one shows that the β integral can be extended to all of R, and using the continuous version of
our delta function we see that∫

R
dβ

∫
ΩX

e(β f (x))dnx = lim
ε→0

1
2ε

vol{x ∈ΩX : | f (x)| ≤ ε}

≈ S∞( f )Xn−k

under appropriate hypotheses.
Turning to the exponential sum, one extends it over all q (it converges) and shows that this is

the singular series. and summing gives

S( f ) = ∑
q

c(q) = ∏
p

δ f (p)
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One the minor arcs one directly estimates the exponential sum to get some cancellation. That’s
the hard part.

4.2. The circle method: Ternary Golbach (2/4/2014)

We’d like to estimate

r3(N) = ∑
n1+n2+n3=N

3

∏
i=1

Λ(ni) .

THEOREM 175 (Vinogradov 1937 [12]). We have

r(N) =
1
2
S(N)N2 +OA

(
N2 (logN)−A

)
,

with the singular series

S(N) =

(
∏
p|N

(
1− 1

(p−1)2

))(
∏
p-N

(
1+

1
(p−1)3

))
.

COROLLARY 176. Every sufficiently large odd number is a sum of three primes.

PROOF. In that case S(N)� 1 and so r(N)� N2. Prime powers contribute O(N3/2 log2 N).
�

REMARK 177. Note that if N is even, S(N) = 0.

Set S(α) = ∑n Λ(n)e(nα)ϕ
(n

x

)
. Then∫

R/Z
S(α)3e(−Nα)dα = ∑

n1+n2+n3=N

3

∏
i=1

Λ(ni)ϕ
(ni

x

)
.

The key idea is to divide the region integration into major arcs: those α which are close to rational
numbers a

q with small denominator, and minor arcs: the remainder. When α is close to rational,
S(α) is a sum over primes in AP and can be estimated very accurately. When α is far from rational,
we hope to make a crude estimate, still approximating α by a rational.

REMARK 178. On ERH, can have major arcs cover the whole circle (Hardy–Littlewood, 1922).

4.2.1. Major arcs I. Fix Q,δ to be chosen later. For (a,q) = 1 let M(a,q) =
[

a
q −δ , a

q +δ

]
⊂

R/Z and set
M=

⊔
q≤Q

⊔
(a,q)=1

M(a,q) .

Note that we are working in R/Z so the inner union is over the multiplicative group. For q 6= q′

we have
∣∣∣a

q −
a′
q′

∣∣∣≥ 1
qq′ ≥

1
Q2 (and for q = q′ we have

∣∣∣a
q −

a′
q

∣∣∣≥ 1
Q > 1

Q2 ) so these sets are disjoint

as long as 2δ ≤ 1
Q2 .

We can make a crude approximation, but a cleaner argument is as follows: for n prime to q, the
function e

(
nx
q

)
on (Z/qZ)× has multiplciative Fourier coefficients〈

χ,e
(

nx
q

)〉
=

1
ϕ(q)

′

∑
b(q)

χ̄(b)e
(

nb
q

)
=

χ(n)
ϕ(q)

G(χ̄) ,
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and hence if (na,q) = 1 we have

e
(

na
q

)
=

1
ϕ(q) ∑

χ(q)
G(χ̄)χ(n)χ(a) .

Now let α = a
q +β with (a,q) = 1. Then most prime powers n are prime to q, and for them we

have:

∑
(n,q)=1

Λ(n)e(nα)ϕ
(n

x

)
=

1
ϕ(q) ∑

χ(q)
G(χ̄)χ(a)∑

n
Λ(n)χ(n)e(nβ )ϕ

(n
x

)
.

If (n,q)> 1 and Λ(n) 6= 0 then n is a power of some prime divisor of q, so the remainder is at
most

∑
p|q

log p
∞

∑
k=1

∣∣∣ϕ (x−1 pk
)∣∣∣ .

Now for k ≤ logx
log p we have

∣∣ϕ (x−1 pk)∣∣= O(1) and for large k we have ϕ

(
pk

x

)
� x

pk so that

∞

∑
k=1

∣∣∣ϕ (x−1 pk
)∣∣∣� logx

log p
+O(1)

and

∑
p|q

log p
∞

∑
k=1

∣∣∣ϕ (x−1 pk
)∣∣∣�∑

p|q
(logx+ log p)� logx logq .

Thus

S(α) =
1

ϕ(q) ∑
χ(q)

G(χ̄)χ(a) ∑
(n,q)=1

Λ(n)χ(n)ϕ
(n

x

)
+∑

q|n
Λ(n)e(nβ )ϕ

(n
x

)
=

1
ϕ(q) ∑

χ(q)
G(χ̄)χ(a)∑

n
Λ(n)χ(n)e(nβ )ϕ

(n
x

)
+O(logx logQ) .

4.2.2. Primes in AP. Set

Fβ (y) = e(βy)ϕ(y) , Gβ (s) = F̃γ(s) .

Now for reasonable ϕ (vanishing to second order at y = 0, say),

Ress=0 Gβ (s) = Fβ (0) = ϕ(0) = 0

and

Gβ (0) =
∫

∞

0
Fβ (y)

dy
y
�
∫

∞

0

ϕ(y)
y

dy = O(1) .

Also, Gβ (1) =
∫

∞

0 Fβ (y)dy = ϕ̂(−β ).
For χ primitive we have the explicit formula:

∑
n

Λ(n)χ(n)Fβx

(n
x

)
= Iq=1ϕ̂(−βx)x−∑

ρ

Gβx(ρ)x
ρ +(1−a)Gβx(0)+

1
2πi

∫
(−1/2)

(
−L′

L
(s; χ)

)
Gβx(s)ds .
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We compute the last integral using CS. Since L′
L (s; χ)� log(q|s|),(∫ +∞

−∞

∣∣∣∣L′L
(
−1

2
+ it
)

1
s

∣∣∣∣2 dt

)1/2

� 1+ logq

while since sGβx(s) is the Mellin transform of −yF ′
βx(y), we have by Plancherel

1
2π

∫ +∞

−∞

∣∣∣∣sGβx

(
−1

2
+ it
)∣∣∣∣2 dt =

∫
∞

0

∣∣∣F ′βx(y)y
−1/2

∣∣∣2 dy
y

=
∫

∞

0

∣∣∣F ′βx(y)
∣∣∣2 y−2 dy

� 1+ |β |x .
We now execute the sum over the zeroes. With Hardy–Littlewood we set ϕ(t) = t2 exp(−t) so

that

Gβx(s) =
Γ(s+2)

(1−2πiβx)s+2 .

In particular, ∣∣Gβx(s)
∣∣= |Γ(s+2)|

(1+4π2β 2x2)
σ/2+1 � e−

π

2 |t| .

The sum over the zeroes with height at least T is then O

4.2.3. Minor arcs. We need to estimate

∑
n

Λ(n)e(αn)ϕ
(n

x

)
.

By Dirichlet’s approximation theorem, we have∣∣∣∣α− a
q

∣∣∣∣≤ δ

q

for some q ≤ δ−1. We may also assume q ≥ Q since otherwise we’re in a major arc. We are
reduced to estimating

∑
n

Λ(n)χ(n)e(βn)ϕ
(n

x

)
and this can be done.
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CHAPTER 5

Extra Stuff

5.1. The Large Sieve Inequality and Bombieri–Vingoradov

5.1.1. Proof of the inequality. Source: [5, §27]; for further discussion see [8, §§7.3-7.5].
Quite often would like to bound sums of the form ∑r |∑n a(n)e(ξrn)|2 ≤ ∆∑n |a(n)|2. Note first

that Cauchy–Schwartz gives

∑
r

∣∣∣∣∑
n

a(n)e(ξrn)
∣∣∣∣2 ≤∑

r

(
∑
n
|a(n)|2

)(
∑
n
|e(ξr(n)|2

)
= RN ‖a‖2

2 .

We would like to exploit the cancellation in the inner sum to get better bounds. Opening the
parentheses, we can write the LHS as

∑
n,m

a(n)a(m)∑
r

e(ξr(n−m)) = R∑
n
|a(n)|2 + ∑

n6=m
a(n)a(m)∑

r
e(ξr(n−m)) .

We hope that by orthogonality the second term is small. In particular, we cannot really hope for
∆ < R.

Secondly, the norm of a matrix is equal to the norm of its transpose. Thus the same ∆ holds for

∑
n

∣∣∣∣∑
r

b(r)e(ξrn)
∣∣∣∣2 ≤ ∆‖b‖2

2 .

For the same reason as before, we can’t really hope for ∆ < N. So try to prove the bound with
∆∼ R+N (recall that ∆ = RN is trivial).

DEFINITION 179. Say that {ξr}R
r=1 ⊂R/Z is δ -spaced if this is so in the quotient metric from

R.

THEOREM 180 (Selberg; Montgomery–Vaughan). Let {ξr}R
r=1 ⊂ R/Z be δ -spaced. Then for

any {a(r)}R
r=1 and any N,M,

(5.1.1)
R

∑
r=1

∣∣∣∣∣ ∑
M<n≤N+M

a(n)e(ξrn)

∣∣∣∣∣
2

≤ ∆ ∑
M<n≤N+M

|a(n)|2 ,

where∆≤ N−1+δ−1.

This is best possible. We give an argument due to Gallagher [7] giving the weaker bound
∆≤ 2πN +δ−1, which is good enough for most applications.

LEMMA 181 (Sobolev embedding). Let F be continuously differentiable on [x−h,x+h]. Then

|F(x)| ≤ 1
2h

∫ x+h

x−h
|F(t)|dt +

∫ x+h

x−h

∣∣F ′(t)∣∣dt .

61



PROOF. Since F is continuous, there is y∈ [x−h,x+h] where F attains its average value there.
Then |F(y)| is at most the average of |F | and |F(x)−F(y)| is at most the variation of F . �

PROOF OF THEOREM 180. Since the LHS of (5.1.1) is independent of M (up to translating a),
we may assume the sum ranges over |n| ≤ N

2 . Let f (x) = ∑|n|≤N/2 a(n)e(nx) and F(x) = | f (x)|2.

Choose representatives so that ξ1 < ξ2 < · · ·< ξr < ξ1+1−δ . Then the intervals
(

ξr− δ

2 ,ξr +
δ

2

)
are disjoint in R/Z. It follows that

∑
r

F(ξr) ≤ ∑
r

(
1
δ

∫
ξr+δ/2

ξr−δ/2
|F(t)|dt +

∫
ξr+δ/2

ξr−δ/2

∣∣F ′(t)∣∣dt
)

≤ 1
δ

∫ 1

0
| f (t)|2 dt +2

∫ 1

0
| f (t)|

∣∣ f ′(t)∣∣dt .

Applying Parseval on R/Z we see that
∫ 1

0 | f (t)|
2 dt =∑n |a(n)|2 and

∫ 1
0 | f ′(t)|

2 dt = 4π2
∑|n|≤N/2 n2 |a(n)| ≤

π2N2
∑|n|≤N/2 |a(n)|2. The claim now follows from Cauchy–Schwartz. �

5.1.2. Application: Bombieri–Vinogradov (ERH on average). Given q and a prime to q set

ψ(x;q,a) = ∑
n≤x

n≡a(q)

Λ(n)

E(x;a,q) = ψ(x;q,a)− x
ϕ(q)

E(x;q) = max
(a,q)=1

|E(x;q,a)|

E∗(x,q) = max
y≤x
|E(y;q)|

THEOREM 182 (Bombieri–Vinogradov). Fix A > 0. Suppose x1/2 (logx)−A ≤ Q≤ x1/2. Then

1
Q ∑

q≤Q
E∗(x,q)� x1/2 log5 x .

Note that ψ(y;q,a) ≤
(

y
q +1

)
logy� 1

qx logx so ∑q≤Q E∗(x,q)� x logx∑q≤Q
1
q � x log2 x.

On the other hand, note that this states that for most q ≤ Q, E∗(x;q)� x1/2 log6 x, that is that the
ERH holds most of the time.

5.1.2.1. Reduction 1: Dirichlet characteres. Recall that

ψ(y;q,a) =
1

ϕ(q) ∑
χ(q)

χ̄(a)ψ(y; χ)

with

ψ(y; χ) = ∑
n≤y

χ(n)Λ(n) .
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We then have

|E(y;q,a)| =
1

ϕ(q)

∣∣∣∣∣∑
χ(q)

χ̄(a)
(
ψ(y; χ)−δχ,χ0y

)∣∣∣∣∣
≤ 1

ϕ(q) ∑
χ(q)

∣∣ψ(y; χ)−δχ,χ0y
∣∣ .

Noting that the RHS is independent of a, we have

|E(y;q)| ≤ 1
ϕ(q) ∑

χ(q)

∣∣ψ(y; χ)−δχ,χ0y
∣∣ .

Let χ ′ be primitive mod q′ and induce χ . Then

∣∣ψ(y; χ)−ψ(y; χ
′)
∣∣ =

∣∣∣∣∣∣∣∣ ∑
pk≤y
p|q

(log p)χ ′(pk)

∣∣∣∣∣∣∣∣
≤ ∑

p|q

logy
log p

log p

= ω(q) logy .

Setting

E∗(x; χ
′) = max

y≤x

∣∣∣∣ψ(y; χ
′)−δχ ′,1

y
q′

∣∣∣∣
and using ω(q)≤ logq≤ logx we get

E∗(x;q)≤ 1
ϕ(q) ∑

χ(q)
E∗(x; χ

′)+ log2 x .

We now executve the sum over q, by considering the contribution of each primitive character.

∑
q≤Q

E∗(x;q)≤ ∑
q′≤Q

′

∑
χ(q)

E∗(x; χ
′) ∑

r≤ Q
q′

1
ϕ(qr)

+ ∑
q≤Q

log2 x .

The last term is in the error range. Also, ∑r≤ Q
q′

1
ϕ(qr) ≤

1
ϕ(q) ∑r≤ Q

q′
1

ϕ(r) and

∑
r≤z

1
ϕ(r)

≤ ∑
r≤z

∏
pk‖r

1
pk−1(p−1)

≤∏
p≤z

(
1+

1
p−1

+
1

p(p−1)
+ · · ·

)

= ∏
p≤z

(
1+

p

(p−1)2

)
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5.2. The circle method: the Partition Function

LEMMA 183 (Dirichlet). Given α ∈ R, P > 0 there are a,q relatively prime with 1 ≤ q ≤ P
and

∣∣∣α− a
q

∣∣∣≤ 1
qP .

PROOF. Consider the set of integers {qα−a | 1≤ q≤ P, 0≤ a < q}. This is a set of size
P(P+1)

2 , so it has two distinct members with distance �
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