Math 322: Problem Set 7 (due 5/11/2015)

Practice problems

- P1. Let G commutative group where every element has order dividing p.
 - (a) Endow G with the structure of a vector space over \mathbb{F}_p .
 - (b) Show that $\dim_{\mathbb{F}_p} G = k$ iff $\#G = p^k$ iff $G \simeq (C_p)^k$.
 - (c) Show that for any $X \subset G$, we have $\langle X \rangle = \operatorname{Span}_{\mathbb{F}_p} X$.
- P2. The group $H = \left\{ \begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} \mid x, y, z \in F \right\}$ is called the *Heisenberg group* over the field F.
 - (a) Show that H is a subgroup of $GL_3(F)$ (you also need to show containment, that is that each element is an invertible matrix).
 - (b) Show that $Z(H) = \left\{ \begin{pmatrix} 1 & 0 & z \\ & 1 & 0 \\ & & 1 \end{pmatrix} \mid z \in F \right\} \simeq F^+.$
 - (c) Show that $H/Z(H) \simeq F^+ \times F^+$ via the map $\begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} \mapsto (x,y)$.
 - (d) Show that H is non-commutative, hence is not isomorphic to the direct product $F^2 \times F$.
 - (e) Suppose $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ with p odd. Then $\#H = p^3$ so that H is a p-group. Show that every element of $H(\mathbb{F}_p)$ has order p.

General theory

Fix a group G.

- 1*. Suppose G is finite and let H be a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).
- 2. (Correspondence Theorem) Let $f \in \text{Hom}(G, H)$, and let K = Ker(f).
 - (a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of Im(f) = f(G).
 - (b) Show that the bijection respects inclusions, indices and normality (if $K < M_1, M_2 < G$ then $M_1 < M_2$ iff $f(M_1) < f(M_2)$, in which case $[M_2 : M_1] = [f(M_2) : f(M_1)]$, and $M_1 \triangleleft M_2$ iff $f(M_1) \triangleleft f(M_2)$).
- 3. Let $X,Y \subset G$ and suppose that $K = \langle X \rangle$ is normal in G. Let $g: G \to G/K$ be the quotient map. Show that $G = \langle X \cup Y \rangle$ iff $G/K = \langle g(Y) \rangle$.

p-groups

- 4. Recall the group $\mathbb{Z}\left[\frac{1}{p}\right] = \left\{\frac{a}{p^k} \in \mathbb{Q} \mid a \in \mathbb{Z}, k \ge 0\right\} < \mathbb{Q}^+$, and note that $\mathbb{Z} \lhd \mathbb{Z}\left[\frac{1}{p}\right]$ (why?).
 - (a) Show that $G = \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$ is a *p*-group.
 - (b) Show that for every $x \in G$ there is $y \in G$ with $y^p = x$ (warning: what does y^p mean?)
 - SUPP Show that every proper subgroup of G is finite and cyclic. Conversely, for every k there is a unique subgroup isomorphic to p^k .

82

*5. Let G be a finite p-group, and let $H \triangleleft G$. Show that if H is non-trivial then so is $H \cap Z(G)$.

Bonus problem

**6. If $|G| = p^n$, show for each $0 \le k \le n$ that G contains a normal subgroup of order p^k .

Supplement: Group actions

A. Fix an action \cdot of the group G on the set X.

- (a) Let $Y \subset X$ be *G-invariant* in that gY = Y. Show that the *restriction* $\cdot \upharpoonright_{G \times Y}$ defines an action of *G* on *Y*.
- (b) Let H < G. Show that the *restriction* $\cdot \upharpoonright_{H \times X}$ defines an action of H on X.
- (c) Show that every G-orbit in X is a union of H-orbits.
- (d) Show that every G-orbit is the union of at most [G:H] H-orbits.

B. Let the finite group G act on the finite set X.

DEF For $g \in G$ its set of fixed points is $Fix(g) = \{x \in X \mid g \cdot x = x\}$. The stabilizer of $x \in X$ is $Stab_G(x) = \{g \in G \mid g \cdot x = x\}$.

(a) Enumerating the elements of the set $\{(g,x) \in G \times X \mid g \cdot x = x\}$ in two different ways, show that

$$\sum_{g \in G} \# \operatorname{Fix}(g) = \sum_{x \in X} \# \operatorname{Stab}_{G}(x).$$

(b) Using the conjugacy of point stabilizers in an orbit, deduce that

$$\sum_{g \in G} \# \operatorname{Fix}(g) = \sum_{\mathcal{O} \in G \setminus X} \# G$$

and hence the *Lemma that is not Burnside's:* the number of orbits is exactly the average number of fixed points,

$$#G\backslash X = \frac{1}{\#G}\sum_{g\in G} \#\operatorname{Fix}(g).$$

(c) Example: suppose we'd like to colour each vertex of a cube by one of four different colours, with two colourings considered equivalent if they are obtained from each other by a rotation of the cube. How many colourings are there, up to equivalence?

(hint for 1: count elements)

(hint for 5: adapt a proof from class)

Supplement: Generation of finite commutative *p*-groups

- A. Let G be a finite commutative p-group.
 - (a) Show that G^p is a proper subgroup (problem P1 is relevant here).
 - (b) Show that G/G^p is a non-trivial commutative group where every element has order p.
 - Let $X \subset G$ be such that its image under the quotient map generates G/G^p .
 - (c) For $k \ge 0$ let $g_k \in G^{p^k}$ ($G^1 = G$). Show that there is $w \in \langle X \rangle$ and $g_{k+1} \in G^{p^{k+1}}$ such that $g_k = w^{p^k} g_{k+1}$.
 - (d) Suppose that $\#G = p^n$. Show that $G^{p^n} < \langle X \rangle$, and then by backward induction eventually show that $G = G^1 < \langle X \rangle$.
 - RMK You have proved: X generates G iff q(X) generates G/G^p . In particular, the minimal number of generators is exactly $\dim_{\mathbb{F}_p} G/G^p = \log_p [G:G^p]$.
- RMK In fact, for any p-group, G, X generates G iff its image generates $G/G'G^p$ where G' is the derived (commutator) subgroup.