Math 322: Problem Set 7 (due 5/11/2015)

Practice problems
P1. Let G commutative group where every element has order dividing p.
(a) Endow G with the structure of a vector space over \mathbb{F}_{p}.
(b) Show that $\operatorname{dim}_{\mathbb{F}_{p}} G=k$ iff $\# G=p^{k}$ iff $G \simeq\left(C_{p}\right)^{k}$.
(c) Show that for any $X \subset G$, we have $\langle X\rangle=\operatorname{Span}_{\mathbb{F}_{p}} X$.

P2. The group $H=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right) \right\rvert\, x, y, z \in F\right\}$ is called the Heisenberg group over the field F.
(a) Show that H is a subgroup of $\mathrm{GL}_{3}(F)$ (you also need to show containment, that is that each element is an invertible matrix).
(b) Show that $Z(H)=\left\{\left.\left(\begin{array}{lll}1 & 0 & z \\ & 1 & 0 \\ & & 1\end{array}\right) \right\rvert\, z \in F\right\} \simeq F^{+}$.
(c) Show that $H / Z(H) \simeq F^{+} \times F^{+}$via the map $\left(\begin{array}{ccc}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right) \mapsto(x, y)$.
(d) Show that H is non-commutative, hence is not isomorphic to the direct product $F^{2} \times F$.
(e) Suppose $F=\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ with p odd. Then $\# H=p^{3}$ so that H is a p-group. Show that every element of $H\left(\mathbb{F}_{p}\right)$ has order p.

General theory

Fix a group G.
1^{*}. Suppose G is finite and let H be a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).
2. (Correspondence Theorem) Let $f \in \operatorname{Hom}(G, H)$, and let $K=\operatorname{Ker}(f)$.
(a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of $\operatorname{Im}(f)=f(G)$.
(b) Show that the bijection respects inclusions, indices and normality (if $K<M_{1}, M_{2}<G$ then $M_{1}<M_{2}$ iff $f\left(M_{1}\right)<f\left(M_{2}\right)$, in which case $\left[M_{2}: M_{1}\right]=\left[f\left(M_{2}\right): f\left(M_{1}\right)\right]$, and $M_{1} \triangleleft M_{2}$ iff $\left.f\left(M_{1}\right) \triangleleft f\left(M_{2}\right)\right)$.
3. Let $X, Y \subset G$ and suppose that $K=\langle X\rangle$ is normal in G. Let $q: G \rightarrow G / K$ be the quotient map. Show that $G=\langle X \cup Y\rangle$ iff $G / K=\langle q(Y)\rangle$.

p-groups

4. Recall the group $\mathbb{Z}\left[\frac{1}{p}\right]=\left\{\left.\frac{a}{p^{k}} \in \mathbb{Q} \right\rvert\, a \in \mathbb{Z}, k \geq 0\right\}<\mathbb{Q}^{+}$, and note that $\mathbb{Z} \triangleleft \mathbb{Z}\left[\frac{1}{p}\right]$ (why?).
(a) Show that $G=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is a p-group.
(b) Show that for every $x \in G$ there is $y \in G$ with $y^{p}=x$ (warning: what does y^{p} mean?)

SUPP Show that every proper subgroup of G is finite and cyclic. Conversely, for every k there is a unique subgroup isomorphic to p^{k}.
*5. Let G be a finite p-group, and let $H \triangleleft G$. Show that if H is non-trivial then so is $H \cap Z(G)$.

Bonus problem

**6. If $|G|=p^{n}$, show for each $0 \leq k \leq n$ that G contains a normal subgroup of order p^{k}.

Supplement: Group actions

A. Fix an action - of the group G on the set X.
(a) Let $Y \subset X$ be G-invariant in that $g Y=Y$. Show that the restriction $\cdot \upharpoonright_{G \times Y}$ defines an action of G on Y.
(b) Let $H<G$. Show that the restriction $\cdot \upharpoonright_{H \times X}$ defines an action of H on X.
(c) Show that every G-orbit in X is a union of H-orbits.
(d) Show that every G-orbit is the union of at most $[G: H] H$-orbits.
B. Let the finite group G act on the finite set X.

DEF For $g \in G$ its set of fixed points is $\operatorname{Fix}(g)=\{x \in X \mid g \cdot x=x\}$. The stabilizer of $x \in X$ is $\operatorname{Stab}_{G}(x)=\{g \in G \mid g \cdot x=x\}$.
(a) Enumerating the elements of the set $\{(g, x) \in G \times X \mid g \cdot x=x\}$ in two different ways, show that

$$
\sum_{g \in G} \# \operatorname{Fix}(g)=\sum_{x \in X} \# \operatorname{Stab}_{G}(x)
$$

(b) Using the conjugacy of point stabilizers in an orbit, deduce that

$$
\sum_{g \in G} \# \operatorname{Fix}(g)=\sum_{\mathcal{O} \in G \backslash X} \# G
$$

and hence the Lemma that is not Burnside's: the number of orbits is exactly the average number of fixed points,

$$
\# G \backslash X=\frac{1}{\# G} \sum_{g \in G} \# \operatorname{Fix}(g)
$$

(c) Example: suppose we'd like to colour each vertex of a cube by one of four different colours, with two colourings considered equivalent if they are obtained from each other by a rotation of the cube. How many colourings are there, up to equivalence?
(hint for 1: count elements)
(hint for 5: adapt a proof from class)

Supplement: Generation of finite commutative p-groups

A. Let G be a finite commutative p-group.
(a) Show that G^{p} is a proper subgroup (problem P 1 is relevant here).
(b) Show that G / G^{p} is a non-trivial commutative group where every element has order p.

- Let $X \subset G$ be such that its image under the quotient map generates G / G^{p}.
(c) For $k \geq 0$ let $g_{k} \in G^{p^{k}}\left(G^{1}=G\right)$. Show that there is $w \in\langle X\rangle$ and $g_{k+1} \in G^{p^{k+1}}$ such that $g_{k}=w^{p^{k}} g_{k+1}$.
(d) Suppose that $\# G=p^{n}$. Show that $G^{p^{n}}<\langle X\rangle$, and then by backward induction eventually show that $G=G^{1}<\langle X\rangle$.
RMK You have proved: X generates G iff $q(X)$ generates G / G^{p}. In particular, the minimal number of generators is exactly $\operatorname{dim}_{\mathbb{F}_{p}} G / G^{p}=\log _{p}\left[G: G^{p}\right]$.

RMK In fact, for any p-group, G, X generates G iff its image generates $G / G^{\prime} G^{p}$ where G^{\prime} is the derived (commutator) subgroup.

