Math 322 Fall 2015: Problem Set 1, due 17/9/2015

Practice and supplementary problems, and any problems specifically marked "OPT" (optional), "SUPP" (supplementary) or "PRAC" (practice) are *not for submission*. It is possible that the grader will not mark all problems.

Practice problems

The following problem is a review of the axioms for a vector space.

- P1 Let X be a set. Carefully show that pointwise addition and scalar multiplication endow the set \mathbb{R}^X of functions from X to \mathbb{R} with the structure of an \mathbb{R} -vectorspace. Meditate on the case $X = [n] = \{0, 1, ..., n-1\}.$
- P2 (Euclid's Lemma) Let a, b, q, r be four integers with b = aq + r. Show that the pairs $\{a, b\}$ and $\{a, r\}$ have the same sets of common divisors, hence the same greatest common divisor.
- P3. Consider the equation 7x + 11y = 1 for unknowns $x, y \in \mathbb{Z}$.
 - (a) Exhibit infinitely many solutions.
 - (*b) Show that you found *all* the solutions.

The integers

- 1. Show that for any integer k, one of the integers k, k+2, k+4 is divisible by 3.
- 2. (Modular arithmetic; see notes for the notation or wait for Tuesday lecture)
 (a) Give a simple rule for the remainder obtained when dividing 3ⁿ by 13, for n ∈ Z_{≥0}.
 PRAC Check that 2¹² ≡ 1 (13).
 - (b) Let k be the smallest positive integer such that $2^k \equiv 1$ (13). Show that k|12.
 - PRAC Check that $2^6 \equiv -1(13), 2^4 \equiv 3(13)$.
 - (c) Use the last check to show that k = 12.
 - (d) Show that $2^{i} \equiv 2^{j} (13)$ iff $i \equiv j (12)$.
- 3. Let *a*, *n* be positive integers and let d = gcd(a, n). Show that the equation $ax \equiv 1(n)$ has a solution iff d = 1.
- 4. Let $f: \mathbb{Z} \to \mathbb{Z}$ be *additive*, in that for all $x, y \in \mathbb{Z}$ we have f(x+y) = f(x) + f(y). PRAC Check that for any $a \in \mathbb{Z}$, $f_a(x) = ax$ is additive.
 - (a) Show that f(0) = 0 (hint: 0 + 0 = 0).
 - (b) Show that f(-x) = -f(x) for all $x \in \mathbb{Z}$.
 - (c) Show by induction on *n* that for all $n \ge 1$, $f(n) = f(1) \cdot n$.
 - (d) Show that every additive map is of the form f_a for some $a \in \mathbb{Z}$.

RMK Let *H* be the set of additive maps $\mathbb{Z} \to \mathbb{Z}$. We showed that the function $\varphi \colon H \to \mathbb{Z}$ given by $\varphi(f) = f(1)$ is a bijection (with inverse $\psi(a) = f_a$).

SUPP Show that the bijections φ, ψ are themselves additive maps (addition in *H* is defined pointwise).

(hints on reverse)

(for 2(a): try the first few values to find the pattern, then use induction)

(for 2(b): divide 12 by k using the theorem on division with remainder)

(for 2(c): consider in turn each proper divisor of 12)

(for 2(d): as in part b replace *i*, *j* with their remainders mod 12. Then, assuming i > j, consider $2^{i+(12-j)}$)

Supplementary problems I: Functions

The following problem will be used in the upcoming discussion of permutations.

- A. Let X, Y, Z, W be sets and let $f: X \to Y, g: Y \to Z$ and $h: Z \to W$ be functions. Recall that the *composition* $g \circ f$ is the function $g \circ f: X \to Z$ such that $(g \circ f)(x) = g(f(x))$ for all $x \in X$.
 - (a) Show that composition is *associative*: that $h \circ (g \circ f) = (h \circ g) \circ f$ (recall that functions are equal if they have the same value at every *x*).
 - (b) *f* is called *injective* or *one-to-one* (1:1) if $x \neq x'$ implies $f(x) \neq f(x')$. Show that if $g \circ f$ is injective then so is *f*.
 - (c) g is called *surjective* or *onto* if for every $z \in Z$ there is $y \in Y$ such that g(y) = z. Show that if $g \circ f$ is surjective then so is g.
 - (d) Suppose that f, g are both surjective or both injective. In either case show that the same holds for $g \circ f$.
 - (e) Give an example of a set *X* and $f, g: X \to X$ such that $f \circ g \neq g \circ f$.

Supplementary Problems II: Subsemigroups of $(\mathbb{Z}_{\geq 0},+)$

- B. The Kingdom of Ruritania mints coins in the denominations d_1, \ldots, d_r Marks (d_i are positive integers, of course). Let $d = \text{gcd}(d_1, \ldots, d_r)$.
 - (a) Show that every payable sum (total value of a combination of coins) is a multiple of d Marks.
 - (b) Show that there exists $N \ge 1$ such that any multiple of *d* Marks exceeding *N* can be expressed using the given coins.
 - (c) Let $H \subset \mathbb{Z}_{\geq 0}$ be the set of sums that can be paid using the coins. Show that *H* is closed under addition.

DEF *H* is called the *subsemigroup of* $\mathbb{Z}_{>0}$ *generated* by $\{d_1, \ldots, d_r\}$.

- C. (partial classification of subsemigroups of $\mathbb{Z}_{\geq 0}$) Let $H \subset \mathbb{Z}_{\geq 0}$ be closed under addition.
 - (a) Show that either H = {0}or there are N, d ≥ 1 such that d divides every element of h, and such that H contains all multiples of d exceeding N. *Hint*: Enumerate the elements of H in increasing order as {h_i}_{i=1}[∞] and consider the sequence {gcd (h₁,...,h_m)}_{m=1}[∞].
 - (b) Conclude that *H* is *finitely generated*: there are $\{d_1, \ldots, d_r\} \subset H$ such that *H* is obtained as in problem C.

Supplementary Problems III: Additive groups in \mathbb{R} .

- E. (just linear algebra)
 - (a) Show that the usual addition and multiplication by rational numbers endow \mathbb{R} with the structure of a vector space over the field \mathbb{Q} .
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be additive (f(x+y) = f(x) + f(y)). Show that f is \mathbb{Z} -linear: that f(nx) = nf(x) for all $x \in \mathbb{R}, n \in \mathbb{Z}$.
 - (c) Show that f is \mathbb{Q} -linear: f(rx) = rf(x) for all $r \in \mathbb{Q}$.
 - (d) Let $B \subset \mathbb{R}$ be a basis for \mathbb{R} as a \mathbb{Q} -vector space (this is called a *Hamel basis*). Use *B* to construct a \mathbb{Q} -linear map $\mathbb{R} \to \mathbb{R}$ which is not of the form $x \mapsto ax$.
- F. (add topology ...) Let $f : \mathbb{R} \to \mathbb{R}$ be additive.
 - (a) Suppose that f is *continuous*. Show that f(x) = ax where a = f(1).
 - (b) (If you have taken Math 422) Suppose that f is *Lebesgue* (or Borel) measurable. Show that there is $a \in \mathbb{R}$ such that f(x) = ax a.e.
 - (c) (" \mathbb{R} has no field automorphisms") Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y). Show that either f(x) = 0 for all x or f(x) = x for all x.