UBC Math 322; notes by Lior Silberman

3.4. Actions, orbits and point stabilizers (handout)

In this handout we gather a list of examples of group actions. We find the orbits, stabilizers,
3.4.1. G acting on G / H. Let G be a group, H a subgroup. The regular action of G on itself induces an action on the subsets of G.

- Let $C=x H$ be a coset in G / H and let $g \in G$. Then $g C$ is also a coset: $g C=g(x H)=$ $(g x) H$. Accordingly G acts on G / H.
(1) Orbits: for any two cosets $x H, y H$ let $g=y x^{-1}$. Then $g(x H)=y x^{-1} x H=y H$ so there is only one orbit.
- We say the action is transitive.
(2) Stabilizers: $\{g \mid g x H=x H\}=\left\{g \mid g x H x^{-1}=x H x^{-1}\right\}=\left\{g \mid g \in x H x^{-1}\right\}=x H x^{-1} \operatorname{Stab}_{G}(x H)=$ $x H x^{-1}$ - the point stabilizers are exactly the conjugates of H.

Proposition 178. Let G act on X. For $x \in X$ let $H=\operatorname{Stab}_{G}(x)$ and let $f: G / H \rightarrow \mathcal{O}(x)$ be the bijection $f(g H)=g x$ of Proposition 173 . Then f is a map of G-sets: for all $g \in G$ and coset $C \in G / H$ we have

$$
f(g \cdot C)=g \cdot f(C)
$$

where on the left we have the action of g on $C \in G / H$ and on the left we have the action of g on $f(C) \in \mathcal{O}(x) \subset X$.

3.4.2. $\mathrm{GL}_{n}(\mathbb{R})$ acting on \mathbb{R}^{n}.

- For a matrix $g \in G=\mathrm{GL}_{n}(\mathbb{R})$ and vector $\underline{v} \in \mathbb{R}^{n}$ write $g \cdot \underline{v}$ for the matrix-vector product. This is an action (linear algebra).
(1) Orbits: We know that for all $g, g \underline{0}=\underline{0}$ so $\{\underline{0}\}$ is one orbit. For all other non-zero vectors we have:

Claim 179. Let V be a vector space, $\underline{u}, \underline{v} \in V$ be two non-zero vectors. Then there is a linear map $g \in \operatorname{GL}(V)$ such that $g \underline{u}=\underline{v}$.

We need a fact from linear algebra
FACt 180. Let V, W be vector spaces and let $\left\{\underline{u}_{i}\right\}_{i \in I}$ be a basis of V. Let $\left\{\underline{w}_{i}\right\}_{i \in I}$ be any vectors in W. Then there is a unique linear map $f: V \rightarrow W$ such that $f\left(\underline{u}_{i}\right)=\underline{w}_{i}$.

Proof of Claim. Complete $\underline{u}, \underline{v}$ to a bases $\left\{\underline{u}_{i}\right\}_{i \in I},\left\{\underline{v}_{i}\right\}_{i \in I}\left(\underline{u}_{1}=\underline{u}, \underline{v}_{1}=\underline{v}\right)$. There is a unique linear map $g: V \rightarrow V$ such that $g \underline{u}_{i}=\underline{v}_{i}$ (because $\left\{\underline{u}_{i}\right\}$ is a basis) and similarly a unique map $h: V \rightarrow V$ such that $h \underline{v}_{i}=\underline{u}_{i}$. But then for all i we have $(g h) \underline{v}_{i}=\underline{v}_{i}=\operatorname{Id} \underline{v}_{i}$ and $(h g) \underline{u}_{i}=\underline{u}_{i}=\operatorname{Id} \underline{u}_{i}$, so by the uniqueness prong of the fact we have $g h=\mathrm{Id}=h g$ and $g \in \operatorname{GL}(V)$.
(2) Stabilizers: clearly all matrices stabilizer zero. For other vectors we compute:

$$
\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{R})}\left(\underline{e}_{n}\right)=\left\{g \left\lvert\, g\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)\right.\right\}=\left\{\left.g=\left(\begin{array}{cc}
h & \underline{0} \\
\underline{u} & 1
\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-1}(\mathbb{R}), \underline{u} \in \mathbb{R}^{n-1}\right\} .
$$

EXERCISE 181. Show that the block-diagonal matrices $M=\left\{\left.\left(\begin{array}{ll}h & \underline{0} \\ \underline{0} & 1\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-1}(\mathbb{R})\right\}$ are a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ isomorphic to $\mathrm{GL}_{n-1}(\mathbb{R})$. Show that the matrices $N=\left\{\left.\left(\begin{array}{cc}I_{n-1} & \underline{0} \\ \underline{u} & 1\end{array}\right) \right\rvert\, \underline{u} \in \mathbb{R}^{n-1}\right\}$ are a subgroup isomorphic to $\left(\mathbb{R}^{n-1},+\right)$. Show that $\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{R})}\left(\underline{e}_{n}\right)$ is the semidirect product $M \ltimes N$.

3.4.3. $\mathrm{GL}_{n}(\mathbb{R})$ acting on pairs of vectors (assume $n \geq 2$ here).

EXERCISE 182. If G acts on X and G acts on Y then setting $g \cdot(x, y)=(g \cdot x, g \cdot y)$ gives an action of G on $X \times Y$.

We study the example where $G=\mathrm{GL}_{n}(\mathbb{R})$ and $X=Y=\mathbb{R}^{n}$.
(1) Orbits:
(a) Clearly $(\underline{0}, \underline{0})$ is a fixed point of the action.
(b) If $\underline{u} \neq \underline{0}, \underline{v} \neq \underline{0}$, the previous discussion constructed g such that $g \underline{u}=\underline{v}$ and hence $g \cdot(\underline{u}, \underline{0})=(\underline{v}, \underline{0})$ and $g \cdot(\underline{0}, \underline{u})=(\underline{0}, \underline{v})$. Since $G \cdot(\underline{u}, \underline{0}) \subset \mathbb{R}^{n} \times\{\underline{0}\}$, we therefore get two more orbits: $\{(\underline{u}, \underline{0}) \mid \underline{u} \neq 0\}$ and $\{(\underline{0}, \underline{u}) \mid \underline{u} \neq 0\}$.
(c) We now need to understand when there is g such that $g \cdot\left(\underline{u}_{1}, \underline{u}_{2}\right)=\left(\underline{v}_{1}, \underline{v}_{2}\right)$. In hte previuos discussion we saw that if $\left\{\underline{u}_{1}, \underline{u}_{2}\right\}$ are linearly independent as are $\left\{\underline{v}_{1}, \underline{v}_{2}\right\}$ then completing to a basis will provide such g. Conversely, if $\left\{\underline{u}_{1}, \underline{u}_{2}\right\}$ are independent then so are $\left\{g \underline{u}_{1}, g \underline{u}_{2}\right\}$ for any invertible g (g preserves the vector space structure hence linear algebra properties like linear independence). We therefore have an orbit

$$
\left\{\left(\underline{u}_{1}, \underline{u}_{2}\right) \mid \text { the vectors are linearly independent }\right\} .
$$

(d) The case of linear dependence remains, so we need to consider the orbit of $\left(\underline{u}_{1}, \underline{u}_{2}\right)$ where both are non-zero and $\underline{u}_{2}=a \underline{u}_{1}$ for some scalar a, necessarily non-zero. But in that case $g \cdot\left(\underline{u}_{1}, \underline{u}_{2}\right)=\left(g \underline{u}_{1}, g\left(a \underline{u}_{1}\right)\right)=\left(g \underline{u}_{1}, a\left(g \underline{u}_{1}\right)\right)$ so we conclude that the orbit is contained in

$$
\left\{\left(\underline{u}_{1}, a \underline{u}_{1}\right) \mid \underline{u}_{1} \neq \underline{0}\right\} .
$$

Conversely, this is an orbit because if $\underline{u}_{1}, \underline{u}_{2}$ are both non-zero then if $g \underline{u}_{1}=\underline{u}_{2}$ then $g \cdot\left(\underline{u}_{1}, a \underline{u}_{1}\right)=\left(\underline{v}_{1}, a \underline{v}_{1}\right)$.
Summary: the orbits are $\{(\underline{0}, \underline{0})\},\{(\underline{u}, \underline{0}) \mid \underline{u} \neq 0\},\{(\underline{0}, \underline{u}) \mid \underline{u} \neq 0\},\left\{\left(\underline{u}_{1}, \underline{u}_{2}\right) \mid \operatorname{dim} \operatorname{Span}_{F}\left\{\underline{u}_{1}, \underline{u}_{2}\right\}=\right.$ and for each $a \in F^{\times}$the set $\left\{\left(\underline{u}_{1}, a \underline{u}_{1}\right) \mid \underline{u}_{1} \neq \underline{0}\right\}$.
(2) Point stabilizers:
(a) $(\underline{0}, \underline{0})$ is fixed by the whole group.
(b) $g(\underline{u}, \underline{0})=(\underline{u}, \underline{0})$ iff $g \underline{u}=\underline{u}$, so this is the case solved before. Similarly for $g \cdot(\underline{u}, a \underline{u})=$ ($\underline{u}, a \underline{u}$) which holds iff $g \underline{u}=\underline{u}$.
(c) $g\left(\underline{e}_{n-1}, \underline{e}_{n}\right)=\left(\underline{e}_{n-1}, \underline{e}_{n}\right)$ holds iff the last two columns of g are $\underline{e}_{n-1}, \underline{e}_{n}$ so

$$
\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{R})}\left(\underline{e}_{n-1}, \underline{e}_{n}\right)=\left\{\left.g=\left(\begin{array}{cc}
h & 0 \\
y & I_{2}
\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-2}(\mathbb{R}), y \in M_{2, n-2}(\mathbb{R})\right\}
$$

EXERCISE 183. Show that the block-diagonal matrices $M=\left\{\left.\left(\begin{array}{ll}h & \underline{0} \\ \underline{0} & I_{2}\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-2}(\mathbb{R})\right\}$ are a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ isomorphic to $\mathrm{GL}_{n-2}(\mathbb{R})$. Show that the matrices $N=\left\{\left.\left(\begin{array}{cc}I_{n-2} & \underline{0} \\ y & 1\end{array}\right) \right\rvert\, y \in M_{2, n-2}(\mathbb{R})\right\} \simeq$
are a subgroup isomorphic to $\left(\mathbb{R}^{2(n-2)},+\right)$. Show that $\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{R})}\left(\underline{e}_{n-1}, \underline{e}_{n}\right)$ is the semidirect product $M \ltimes N$.

3.4.4. $\mathrm{GL}_{n}(\mathbb{R})$ and $\operatorname{PGL}_{n}(\mathbb{R})$ acting on $\prod^{n-1}(\mathbb{R})$.

Definition 184. Write $\mathbb{P}^{n-1}(\mathbb{R})$ for the set of 1-dimensional subspaces of \mathbb{R}^{n} (this set is called "projective space of dimension $n-1$ ").

- Let $L \in \mathbb{P}^{n-1}(\mathbb{R})$ be a line in \mathbb{R}^{n} (one-dimensional subspace. Let $g \in \mathrm{GL}_{n}(\mathbb{R})$. Then $g(L)=\{g \underline{v} \mid \underline{v} \in L\}$ is also a line (the image of a subspace is a subspace, and invertible linear maps preserve dimension), and this defines an action of $\mathrm{GL}_{n}(\mathbb{R})$ on $\mathbb{P}^{n-1}(\mathbb{R})$ (a restriction of the action of $\mathrm{GL}_{n}(\mathbb{R})$ on all subsets of \mathbb{R}^{n} to the set of subsets which are lines).
(1) The action is transitive: suppose $L=\operatorname{Span}\{\underline{u}\}$ and $L^{\prime}=\operatorname{Span}\{\underline{v}\}$ for some non-zero vectors \underline{u},
$v v$. Then the element g such that $g \underline{u}=\underline{v}$ will also map $g L=L^{\prime}$.
(2) Suppose $L=\operatorname{Span}\left\{\underline{e}_{n}\right\}$. Then $g L=L$ means $g \underline{e}_{n}$ spans L, so $g \underline{e}_{n}=a \underline{e}_{n}$ for some non-zero a. It follows that

$$
\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{R})}\left(F \cdot \underline{e}_{n}\right)=\left\{\left.g=\left(\begin{array}{ll}
h & \underline{0} \\
\underline{u} & a
\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-1}(\mathbb{R}), a \in \mathbb{R}^{\times} \underline{u} \in \mathbb{R}^{n-1}\right\}
$$

- Repeat Exercize 181 from before, now with $M=\left\{\left.\left(\begin{array}{ll}h & \underline{0} \\ \underline{0} & a\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{n-1}(\mathbb{R}), a \in \mathbb{R}^{\times}\right\} \simeq$
$\mathrm{GL}_{n-1}(\mathbb{R}) \times \mathbb{R}^{\times}$.

This can be generalized. Write

$$
\operatorname{Gr}(n, k)=\left\{L \subset \mathbb{R}^{n} \mid L \text { is a subspace and } \operatorname{dim}_{\mathbb{R}^{n}} L=k\right\}
$$

Then $\mathrm{GL}_{n}(\mathbb{R})$ still acts here (same proof), the action is still transitive (for any L, L^{\prime}, take bases $\left\{\underline{u}_{i}\right\}_{i=1}^{k} \subset L,\left\{\underline{v}_{i}\right\}_{i=1}^{k} \subset L^{\prime}$, complete both to bases of \mathbb{R}^{n} and get a map), and the stabilizer will have the form $M \ltimes N$ with $M \simeq \mathrm{GL}_{n-k}(\mathbb{R}) \times \mathrm{GL}_{k}(\mathbb{R})$ and $N \simeq\left(M_{k, n-k}(\mathbb{R}),+\right)$.
3.4.5. $\mathrm{O}(n)$ acting on \mathbb{R}^{n}. Let the orthogonal group $\mathrm{O}(n)=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}) \mid g^{t} g=\mathrm{Id}\right\}$ act on \mathbb{R}^{n}.

- This is an example of restriction the action of $\mathrm{GL}_{n}(\mathbb{R})$ to a subgroup.
(1) Orbits: we know that if $g \in \mathrm{O}(n)$ and $\underline{v} \in \mathbb{R}^{n}$ then $\|\underline{v} \underline{\|}\|=\|\underline{v}\|$. Conversely, for each $a \geq 0\left\{\underline{v} \in \mathbb{R}^{n} \mid\|v v\|=a\right\}$ is an orbit. When $a=0$ this is clear (just the zero vector) and otherwise let $\underline{u}, \underline{v}$ both have norm a. Let $\underline{u}_{1}=\frac{1}{a}$
$v u, \underline{v}_{1}=\frac{1}{a} \underline{v}$ and complete $\underline{u}_{1}, \underline{v}_{1}$ to orthonormal bases $\left\{\underline{u}_{i}\right\},\left\{\underline{v}_{i}\right\}$ respectively. Then the unique invertible linear map $g \in \mathrm{GL}_{n}(\mathbb{R})$ such that $g \underline{u}_{i}=\underline{v}_{i}$ is orthogonal (linear algebra exercize) and in particular we have $g \in \mathrm{O}(n)$ such that $g \underline{u}_{1}=\underline{v}_{1}$ and then $g \underline{u}=g\left(a \underline{u}_{1}\right)=$ $a g \underline{u}_{1}=a \underline{v}_{1}=$
$v v$.
3.4.6. $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ acting on \mathbb{R}^{n}. Let $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ be the Euclidean group: the group of all ridig motions of \mathbb{R}^{n} (maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which preserve distance, in that $\|f(\underline{u})-f(\underline{v})\|=\|\underline{u}-\underline{v}\|$).
(1) The action is transitive: for any fixed $\underline{a} \in \mathbb{R}^{n}$ the translation $T_{\underline{a}} \underline{x}=\underline{x}+\underline{a}$ preserves distances, and for any $\underline{u}, \underline{v}$ we have $T_{\underline{v}-\underline{u}}(\underline{u})=\underline{v}$.
(2) The point stabilizer of zero is exactly the orthogonal group!

Proof. Let $f \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ satisfy $f(\underline{0})=\underline{0}$. We show that f preserves inner products. For this first note that for any \underline{x},

$$
\|f(\underline{x})\|=\|f(\underline{x})-\underline{0}\|=\|f(\underline{x})-f(\underline{0})\|=\|\underline{x}-\underline{0}\|=\|\underline{x}\| .
$$

Second since $\|\underline{x}-\underline{y}\|^{2}=\|\underline{x}\|^{2}+\|\underline{y}\|^{2}-2\langle\underline{x}, \underline{y}\rangle$ we have the polarization identity

$$
\langle\underline{x}, \underline{y}\rangle=\frac{1}{2}\left[\|\underline{x}\|^{2}+\|\underline{y}\|^{2}-\|\underline{x}-\underline{y}\|^{2}\right]
$$

so that

$$
\begin{aligned}
\langle f(\underline{x}), f(\underline{y})\rangle & =\frac{1}{2}\left[\|f(\underline{x})\|^{2}+\|f(\underline{y})\|^{2}-\|f(\underline{x})-f(\underline{y})\|^{2}\right] \\
& =\frac{1}{2}\left[\|\underline{x}\|^{2}+\|\underline{y}\|^{2}-\|\underline{x}-\underline{y}\|^{2}\right]
\end{aligned}
$$

Now let $\left\{\underline{e}_{i}\right\}_{i=1}^{n}$ be the standard orthonormal basis. It follows that $\underline{u}_{i}=f\left(\underline{e}_{i}\right)$ also form an orthonormal basis, and we let $g \in \mathrm{O}(n)$ be the map such that $g \underline{e}_{i}=\underline{u}_{i}$. Finally, let $\underline{x} \in \mathbb{R}^{n}$ and let $a_{i}=\left\langle\underline{x}, \underline{e}_{i}\right\rangle$. Then $\underline{x}=\sum_{i} a_{i} \underline{e}_{i}$ and since

$$
\left\langle f(\underline{x}), \underline{u}_{i}\right\rangle=\left\langle f(\underline{x}), f\left(\underline{e}_{i}\right)\right\rangle=\left\langle\underline{x}, \underline{e}_{i}\right\rangle=a_{i}
$$

that also

$$
f(\underline{x})=\sum_{i} a_{i} \underline{u}_{i}=\sum_{i} a_{i} g \underline{e}_{i}=g\left(\sum_{i} a_{i} \underline{e}_{i}\right)=g \underline{x}
$$

so that f agrees with g.
EXERCISE 185. Let $V=\left\{T_{\underline{a}} \mid \underline{a} \in \mathbb{R}^{n}\right\} \subset \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ be the group of translations. This is a subgroup isomorphic to \mathbb{R}^{n}, and $\overline{\mathrm{O}}(n)$ is the semidirect product $\mathrm{O}(n) \ltimes V$.

EXERCISE 186. The orbits of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ on the space of pairs $\mathbb{R}^{n} \times \mathbb{R}^{n}$ are exactly the sets $D_{a}=\{(\underline{x}, \underline{y}) \mid\|\underline{x}-\underline{y}\|=a\}(a \geq 0)$.

