
UBC Math 322; notes by Lior Silberman

3.4. Actions, orbits and point stabilizers (handout)

In this handout we gather a list of examples of group actions. We find the orbits, stabilizers,

3.4.1. G acting on G/H. Let G be a group, H a subgroup. The regular action of G on itself
induces an action on the subsets of G.

• Let C = xH be a coset in G/H and let g ∈ G. Then gC is also a coset: gC = g(xH) =
(gx)H. Accordingly G acts on G/H.

(1) Orbits: for any two cosets xH,yH let g = yx−1. Then g(xH) = yx−1xH = yH so there is
only one orbit.
• We say the action is transitive.

(2) Stabilizers: {g | gxH = xH}=
{

g | gxHx−1 = xHx−1}={g | g ∈ xHx−1}= xHx−1 StabG (xH)=

xHx−1 – the point stabilizers are exactly the conjugates of H.

PROPOSITION 178. Let G act on X. For x ∈ X let H = StabG(x) and let f : G/H →O(x) be
the bijection f (gH) = gx of Proposition 173. Then f is a map of G-sets: for all g ∈ G and coset
C ∈ G/H we have

f (g ·C) = g · f (C)

where on the left we have the action of g on C ∈ G/H and on the left we have the action of g on
f (C) ∈ O(x)⊂ X.

3.4.2. GLn(R) acting on Rn.
• For a matrix g ∈ G = GLn(R) and vector v ∈ Rn write g · v for the matrix-vector product.

This is an action (linear algebra).
(1) Orbits: We know that for all g, g0 = 0 so {0} is one orbit. For all other non-zero vectors

we have:

CLAIM 179. Let V be a vector space, u,v ∈V be two non-zero vectors. Then there is
a linear map g ∈ GL(V ) such that gu = v.

We need a fact from linear algebra

FACT 180. Let V,W be vector spaces and let {ui}i∈I be a basis of V . Let {wi}i∈I be
any vectors in W. Then there is a unique linear map f : V →W such that f (ui) = wi.

PROOF OF CLAIM. Complete u,v to a bases {ui}i∈I ,{vi}i∈I (u1 = u, v1 = v). There
is a unique linear map g : V →V such that gui = vi (because {ui} is a basis) and similarly
a unique map h : V →V such that hvi = ui. But then for all i we have (gh)vi = vi = Idvi
and (hg)ui = ui = Idui, so by the uniqueness prong of the fact we have gh = Id = hg and
g ∈ GL(V ). �

(2) Stabilizers: clearly all matrices stabilizer zero. For other vectors we compute:

StabGLn(R) (en) =

g | g


0
...
0
1

=


0
...
0
1


=

{
g =

(
h 0
u 1

)
| h ∈ GLn−1(R), u ∈ Rn−1

}
.
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EXERCISE 181. Show that the block-diagonal matrices M =

{(
h 0
0 1

)
| h ∈ GLn−1(R)

}
are a

subgroup of GLn(R) isomorphic to GLn−1(R). Show that the matrices N =

{(
In−1 0

u 1

)
| u ∈ Rn−1

}
are a subgroup isomorphic to

(
Rn−1,+

)
. Show that StabGLn(R) (en) is the semidirect product

MnN.

3.4.3. GLn(R) acting on pairs of vectors (assume n≥ 2 here).

EXERCISE 182. If G acts on X and G acts on Y then setting g · (x,y) = (g · x,g · y) gives an
action of G on X×Y .

We study the example where G = GLn(R) and X = Y = Rn.
(1) Orbits:

(a) Clearly (0,0) is a fixed point of the action.
(b) If u 6= 0, v 6= 0, the previous discussion constructed g such that gu = vand hence

g · (u,0) = (v,0) and g · (0,u) = (0,v). Since G · (u,0)⊂ Rn×{0}, we therefore get
two more orbits: {(u,0) | u 6= 0} and {(0,u) | u 6= 0}.

(c) We now need to understand when there is g such that g · (u1,u2) = (v1,v2). In hte
previuos discussion we saw that if {u1,u2} are linearly independent as are {v1,v2}
then completing to a basis will provide such g. Conversely, if {u1,u2} are indepen-
dent then so are {gu1,gu2} for any invertible g (g preserves the vector space structure
hence linear algebra properties like linear independence). We therefore have an orbit

{(u1,u2) | the vectors are linearly independent} .
(d) The case of linear dependence remains, so we need to consider the orbit of (u1,u2)

where both are non-zero and u2 = au1 for some scalar a, necessarily non-zero. But
in that case g · (u1,u2) = (gu1,g(au1)) = (gu1,a(gu1)) so we conclude that the orbit
is contained in

{(u1,au1) | u1 6= 0} .
Conversely, this is an orbit because if u1,u2 are both non-zero then if gu1 = u2 then
g · (u1,au1) = (v1,av1).
Summary: the orbits are {(0,0)}, {(u,0) | u 6= 0},{(0,u) | u 6= 0}, {(u1,u2) | dimSpanF {u1,u2}= 2},
and for each a ∈ F× the set {(u1,au1) | u1 6= 0}.

(2) Point stabilizers:
(a) (0,0) is fixed by the whole group.
(b) g(u,0) = (u,0) iff gu = u, so this is the case solved before. Similarly for g · (u,au) =

(u,au) which holds iff gu = u.
(c) g

(
en−1,en

)
=
(
en−1,en

)
holds iff the last two columns of g are en−1,en so

StabGLn(R)
(
en−1,en

)
=

{
g =

(
h 0
y I2

)
| h ∈ GLn−2(R),y ∈M2,n−2(R)

}
.

EXERCISE 183. Show that the block-diagonal matrices M =

{(
h 0
0 I2

)
| h ∈ GLn−2(R)

}
are a

subgroup of GLn(R) isomorphic to GLn−2(R). Show that the matrices N =

{(
In−2 0

y 1

)
| y ∈M2,n−2(R)

}
'
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are a subgroup isomorphic to
(
R2(n−2),+

)
. Show that StabGLn(R)

(
en−1,en

)
is the semidirect prod-

uct MnN.

3.4.4. GLn(R) and PGLn(R) acting on ¶n−1(R).

DEFINITION 184. Write Pn−1(R) for the set of 1-dimensional subspaces of Rn (this set is
called “projective space of dimension n−1”).

• Let L ∈ Pn−1(R) be a line in Rn (one-dimensional subspace. Let g ∈ GLn(R). Then
g(L) = {gv | v ∈ L} is also a line (the image of a subspace is a subspace, and invertible
linear maps preserve dimension), and this defines an action of GLn(R) on Pn−1(R) (a
restriction of the action of GLn(R) on all subsets of Rn to the set of subsets which are
lines).

(1) The action is transitive: suppose L = Span{u} and L′ = Span{v} for some non-zero
vectors u,
vv. Then the element g such that gu = v will also map gL = L′.

(2) Suppose L = Span{en}. Then gL = L means gen spans L, so gen = aen for some non-zero
a. It follows that

StabGLn(R) (F · en) =

{
g =

(
h 0
u a

)
| h ∈ GLn−1(R),a ∈ R× u ∈ Rn−1

}
.

• Repeat Exercize 181 from before, now with M =

{(
h 0
0 a

)
| h ∈ GLn−1(R),a ∈ R×

}
'

GLn−1(R)×R×.

This can be generalized. Write

Gr(n,k) = {L⊂ Rn | L is a subspace and dimRn L = k} .

Then GLn(R) still acts here (same proof), the action is still transitive (for any L,L′, take bases
{ui}

k
i=1 ⊂ L, {vi}

k
i=1 ⊂ L′, complete both to bases of Rn and get a map), and the stabilizer will have

the form MnN with M ' GLn−k(R)×GLk(R) and N '
(
Mk,n−k(R),+

)
.

3.4.5. O(n) acting on Rn. Let the orthogonal group O(n) = {g ∈ GLn(R) | gtg = Id} act on
Rn.

• This is an example of restriction the action of GLn(R) to a subgroup.

(1) Orbits: we know that if g ∈ O(n) and v ∈ Rn then ‖gv‖ = ‖v‖. Conversely, for each
a≥ 0 {v ∈ Rn | ‖vv‖= a} is an orbit. When a = 0 this is clear (just the zero vector) and
otherwise let u,vboth have norm a. Let u1 =

1
a

vu, v1 = 1
av and complete u1,v1 to orthonormal bases {ui} ,{vi} respectively. Then the

unique invertible linear map g ∈ GLn(R) such that gui = vi is orthogonal (linear algebra
exercize) and in particular we have g ∈ O(n) such that gu1 = v1 and then gu = g(au1) =
agu1 = av1 =
vv.
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3.4.6. Isom(Rn) acting on Rn. Let Isom(Rn) be the Euclidean group: the group of all ridig
motions of Rn (maps f : Rn→ Rn which preserve distance, in that ‖ f (u)− f (v)‖= ‖u− v‖).

(1) The action is transitive: for any fixed a ∈ Rn the translation Tax = x+ a preserves dis-
tances, and for any u,v we have Tv−u(u) = v.

(2) The point stabilizer of zero is exactly the orthogonal group!
PROOF. Let f ∈ Isom(Rn) satisfy f (0) = 0. We show that f preserves inner products.

For this first note that for any x,

‖ f (x)‖= ‖ f (x)−0‖= ‖ f (x)− f (0)‖= ‖x−0‖= ‖x‖ .

Second since
∥∥x− y

∥∥2
= ‖x‖2 +

∥∥y
∥∥2−2

〈
x,y
〉

we have the polarization identity〈
x,y
〉
=

1
2

[
‖x‖2 +

∥∥y
∥∥2−

∥∥x− y
∥∥2
]

so that 〈
f (x), f (y)

〉
=

1
2

[
‖ f (x)‖2 +

∥∥ f (y)
∥∥2−

∥∥ f (x)− f (y)
∥∥2
]

=
1
2

[
‖x‖2 +

∥∥y
∥∥2−

∥∥x− y
∥∥2
]

Now let {ei}
n
i=1 be the standard orthonormal basis. It follows that ui = f (ei) also

form an orthonormal basis, and we let g ∈O(n) be the map such that gei = ui. Finally, let
x ∈ Rn and let ai = 〈x,ei〉. Then x = ∑i aiei and since

〈 f (x),ui〉= 〈 f (x), f (ei)〉= 〈x,ei〉= ai

that also

f (x) = ∑
i

aiui = ∑
i

aigei = g

(
∑

i
aiei

)
= gx

so that f agrees with g. �

EXERCISE 185. Let V =
{

Ta | a ∈ Rn} ⊂ Isom(Rn) be the group of translations. This is a
subgroup isomorphic to Rn, and O(n) is the semidirect product O(n)nV .

EXERCISE 186. The orbits of Isom(Rn) on the space of pairs Rn×Rn are exactly the sets
Da =

{
(x,y) |

∥∥x− y
∥∥= a

}
(a≥ 0).
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