Math 101 - WORKSHEET 32 MANIPULATING POWER SERIES

1. Manipulating power series: Calculus

- (1) Let $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$. We know that f converges everywhere, while g converges in (-1,1].
 - (a) Find the power series representation of f'(x). What is f(x)?

(b) Find the power series representation of g'(x). What is g'(x)? What is g(x)?

- (c) Conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log 2$.
- (2) Consider the error function $\operatorname{erf}(x) = \int_0^x \exp(-t^2) \, \mathrm{d}t$. (a) Find the power series expansion of $\operatorname{erf}(x)$ about zero.

 - (b) How many terms in the expansion are necessary to estimate $\operatorname{erf}(\frac{1}{2})$ to within 0.001?

2. Manipulating power series: summing series

(3) Find $\sum_{n=1}^{\infty} \frac{1}{n2^n}$.

- (4) A vatars of geometric series. (a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

(b) Express $\sum_{n=1}^{\infty} n^2 x^n$ as a rational function (ratio of polynomials).

(5) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{nx}}{n!}$.