Math 101 - WORKSHEET 31 MANIPULATING POWER SERIES

1. Manipulating power series: Geometric Series

Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. (1) Find a power series representation for (a) (Final 2014) $\frac{x^3}{1-x}$

- (b) (Final 2011) $\frac{1}{1+x^3}$
- (2) Find a power series representation for $\frac{1}{x+3}$ (a) Expanding about a = 0
 - (b) Expanding about a = 7

2. Manipulating power series: Calculus

(3) (Final 2011) Evaluate the following indefinite integral as a power series, and find its radius of convergence: $\int \frac{\mathrm{d}x}{1+x^3}$

Date: 23/3/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (4) Let $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$. Last time we verified that f converges everywhere, while g converges for $-1 < x \le 1$.
 - (a) Find the power series representation of f'(x). What is f(x)?

(b) Find the power series representation of g'(x). What is g'(x)? What is g(x)?

(c) Conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log 2$.

(d) Find the power series representation of $\int_0^x \exp(-t^2) \, \mathrm{d} t.$

3. MANIPULATING POWER SERIES: SUMMING SERIES (5) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.