Math 101 - WORKSHEET 31 MANIPULATING POWER SERIES

\author{

1. Manipulating power series: Geometric Series
}

Recall that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.
(1) Find a power series representation for
(a) (Final 2014) $\frac{x^{3}}{1-x}$
(b) (Final 2011) $\frac{1}{1+x^{3}}$
(2) Find a power series representation for $\frac{1}{x+3}$
(a) Expanding about $a=0$
(b) Expanding about $a=7$

2. Manipulating power series: Calculus

(3) (Final 2011) Evaluate the following indefinite integral as a power series, and find its radius of convergence: $\int \frac{\mathrm{d} x}{1+x^{3}}$
(4) Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}$. Last time we verified that f converges everywhere, while g converges for $-1<x \leq 1$.
(a) Find the power series representation of $f^{\prime}(x)$. What is $f(x)$?
(b) Find the power series representation of $g^{\prime}(x)$. What is $g^{\prime}(x)$? What is $g(x)$?
(c) Conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\log 2$.
(d) Find the power series representation of $\int_{0}^{x} \exp \left(-t^{2}\right) \mathrm{d} t$.
(5) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

