Math 101 – SOLUTIONS TO WORKSHEET 31 MANIPULATING POWER SERIES

1. Manipulating power series: Geometric Series

Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.

(1) Find a power series representation for

(a) (Final 2014) $\frac{x^3}{1-x}$

Solution: We know that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. Multiplying by x^3 we find

$$\frac{x^3}{1-x} = x^3 \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} x^{n+3} = \sum_{m=3}^{\infty} x^m.$$

(b) (Final 2011) $\frac{1}{1+x^3}$

Solution: We know that $\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$. Substituting $u = -x^3$ we therefore get

$$\frac{1}{1+x^3} = \sum_{n=0}^{\infty} (-x^3)^n = \sum_{n=0}^{\infty} (-1)^n x^{3n}.$$

(2) Find a power series representation for $\frac{1}{x+3}$

(a) Expanding about a = 0

Solution: Striving toward $\frac{1}{1-u}$, we have:

$$\frac{1}{x+3} = \frac{1}{3} \cdot \frac{1}{1+\left(\frac{x}{3}\right)} = \frac{1}{3} \cdot \frac{1}{1-\left(-\frac{x}{3}\right)}$$
$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{x}{3}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^n.$$

(b) Expanding about a = 7

Solution: We need x-7 in our function, so we have:

$$\frac{1}{x+3} = \frac{1}{x-7+10} = \frac{1}{10} \cdot \frac{1}{1-\left(-\frac{x-7}{10}\right)}$$
$$= \frac{1}{10} \sum_{n=0}^{\infty} \left(-\frac{x-7}{10}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{10^{n+1}} (x-7)^n.$$

2. Manipulating power series: Calculus

(3) (Final 2011) Evaluate the following indefinite integral as a power series, and find its radius of convergence: $\int \frac{dx}{1+x^3}$

Solution: In 1(b) we found that

$$\frac{1}{1+x^3} = \sum_{n=0}^{\infty} (-1)^n x^{3n} .$$

Integrating term-by-term we find

$$\int \frac{\mathrm{d}x}{1+x^3} = C + \sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1} x^{3n+1}.$$

The expansion $\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$ has radius of convergence 1 (open interval |u| < 1). So the open interval for the expansion of $\frac{1}{1+x^3}$ was where $\left|-x^3\right|<1$, that is where $\left|x\right|^3<1$, that is where |x| < 1, so the radius of convergence was 1. Since integration doesn't change the radius, the radius

- (4) Let $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$. Last time we verified that f converges everywhere, while g converges for $-1 < x \le 1$.

(a) Find the power series representation of f'(x). What is f(x)?

Solution: $f'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{m=0}^{\infty} \frac{x^m}{m!} = f(x)$ so f'(x) = f(x) and $f(x) = Ce^x$. Since f(0) = 1, we have C = 1 and $f(x) = e^x$.

f(x) = Ce⁻. Since f(0) = 1, we have C = 1 and f(x) = e.
 (b) Find the power series representation of g'(x). What is g'(x)? What is g(x)?
 Solution: g'(x) = ∑_{n=1}[∞] (-1)ⁿ⁻¹ nxⁿ⁻¹ = ∑_{n=1}[∞] (-x)ⁿ⁻¹ = ∑_{m=0}[∞] (-x)^m = 1/(1-(-x)) = 1/(1+x) so g'(x) = 1/(1+x) and g(x) = log(1+x) + C. Since g(0) = 0, we have C = 0 and g(x) = log x.
 (c) Conclude that ∑_{n=1}[∞] (-1)ⁿ⁻¹/n = log 2.
 Solution: Since x = 1 is in the domain of convergence of g, we have

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 1^n = g(1) = \log(1+1) = \log 2.$$

(d) Find the power series representation of $\int_0^x \exp(-t^2) dt$. **Solution:** We have $\exp(-t^2) = \sum_{n=0}^{\infty} \frac{(-t^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^{2n}$. Integrating term-by-term we

$$\int_0^x f(-t^2) dt = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \left[\frac{t^{2n+1}}{2n+1} \right]_{t=0}^{t=x} = \sum_{n=0}^\infty \frac{(-1)^n}{n!(2n+1)} t^{2n+1}.$$

- 3. Manipulating power series: summing series

(5) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$. Solution: Let $h(x) = \sum_{n=1}^{\infty} nx^n$. We see that

$$h(x) = x \sum_{n=1}^{\infty} nx^{n-1} = x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=1}^{\infty} x^n$$
$$= x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = x \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1-x}$$
$$= \frac{x}{(1-x)^2}.$$

Now the radius of convergence of $\sum_{n=0}^{\infty} x^n$ is 1, so $\frac{1}{2}$ is in the domain of convergence and we conclude that

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = \frac{4}{2} = 2.$$