Math 101 - SOLUTIONS TO WORKSHEET 28 ABSOLUTE CONVERGENCE

1. More Tail Estimates

(1) It is known that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2$. How many terms are needed for the error to be less than 0.01 ?

Solution: The series is alternating, so the error in approximating its sum by a partial sum is less than the first ommitted term. Taking the first 99 terms, this means that

$$
\left|\log 2-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}\right)\right| \leq \frac{1}{100}
$$

as desired.
(2) It is known that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4}$. How many terms are needed for the error to be less than $0.001 ?$

Solution: Again the series is alternating. The magnitude of the nth term is $\frac{1}{2 n-1}$ so taking the first 500 terms we get that

$$
\left|\frac{\pi}{4}-\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots-\frac{1}{999}\right)\right| \leq \frac{1}{1001}<\frac{1}{1000}
$$

2. Convergence

(3) Which of the following converges:

$$
\square\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty} \square \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \square\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty} \square \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

Solution: $\lim _{n \rightarrow 1} \frac{1}{\sqrt{n}}=0$, so also $\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{n}}=0$, and by the squeeze theorem $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=$ 0 , so both sequences converge. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p=\frac{1}{2}<1$ so it diverges while the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by the alternating series test.
(4) Place checkmarks

	Converges		Diverges
	Absolutely	Conditionally	
$\sum_{n=1}^{\infty}(-1)^{n}$			
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$			
$\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{\sin ^{n}}{n}$			

3. Ratio test

(5) Decide whether the following series converge:
(a) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{2^{n+1}} / \frac{n}{2^{n}}=\frac{n+1}{n} \cdot \frac{2^{n}}{2^{n+1}}=\frac{1}{2}\left(1+\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2}<1$ so the series converges by the ratio test.
(b) $\sum_{n=0}^{\infty} \frac{n!}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{2^{n+1}} / \frac{n!}{2^{n}}=\frac{(n+1)!}{n!} \cdot \frac{2^{n}}{2^{n+1}}=\frac{n+1}{2} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \infty>1$ so the series diverges by the ratio test.
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{n+1} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0<1$ so the series converges by the ratio test.
(d) For which values of x does $\sum_{n=0}^{\infty} n x^{n}$ converge?

Solution: Let $a_{n}=n x^{n}$. Then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)|x|^{n+1}}{n|x|^{n}}=\left(1+\frac{1}{n}\right)|x| \underset{n \rightarrow \infty}{\longrightarrow}|x| .
$$

By the ratio test, the series converges if $|x|<1$ and diverges if $|x|>1$. If $|x|=1$ then $\left|a_{n}\right|=n|x|^{n}=n \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ so the series diverges by the divergence test. We conclude that the series converges exactly when $|x|<1$, that is for $x \in(-1,1)$.

