Math 101 - WORKSHEET 27
 ALTERNATING SERIES

1. Converge or Diverge?

(1) Determine, with explanation, whether the following series converge or diverge.
(a) (Alternating harmonic series) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
(b) $1-\frac{1}{4}+\frac{1}{3}-\frac{1}{16}+\frac{1}{5}-\frac{1}{36}+\frac{1}{7}-\frac{1}{64}+\frac{1}{9}-\frac{1}{100}+\frac{1}{11}-\frac{1}{144}+\cdots$
(c) (Final 2014) $\sum_{n=1}^{\infty} \frac{n \cos (\pi n)}{2^{n}}$
(d) (Final 2011) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}=1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots$ (your answer will depend on p)
(2) Power series
(a) (Final 2013, variant) Decide whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(x+2)^{n}$ converges or diverges at $x=-1$ and at $x=-3$.
(b) Decide whether the series $\sum_{n=1}^{\infty} n x^{n}$ converges or diverges at $x=1$ and $x=-1$.

2. ERror estimates

(3) (a) It is known that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2$. How many terms are needed for the error to be less than 0.01 ?
(b) It is known that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4}$. How many terms are needed for the error to be less than 0.001 ?
(4) (MacLaurin expansions)
(a) It is known that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. How close is $\frac{1}{2}-\frac{1}{6}+\frac{1}{24}$ to $\frac{1}{e}$? How many terms are needed to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$?
(b) The error function is (roughly) given by $\operatorname{erf}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}$. How many terms are needed to approximate $\operatorname{erf}\left(\frac{1}{10}\right)$ to within 10^{-11} ?

