Math 101 – SOLUTIONS TO WORKSHEET 26 THE COMPARISON TEST

1. Comparison by Massaging

(1) Determine, with explanation, whether the following series converge or diverge.

(a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ **Solution:** For $n \ge 1$ we have $n^2 + 1 \le n^2 + n^2 = 2n^2$ so that $\frac{1}{\sqrt{n^2+1}} \ge \frac{1}{\sqrt{2n^2}} = \frac{1}{\sqrt{2}} \frac{1}{n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with $p = 1 \le 1$) so by the comparison test the given series diverges as well series diverges as well.

(b) (Final 2013, variant) $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \frac{1}{121} + \cdots$ **Solution:** The series is $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$ and has positive terms. The *n*th odd number is 2n - 1 so the series is

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

For $n \ge 1$, $2n-1 \ge 2n-n = n$ so $\frac{1}{(2n-1)^2} \le \frac{1}{n^2}$. The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test

(c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^2}$ **Solution:** For $n \ge 2$ we have $n + \sin n \ge n - 1 \ge n - \frac{n}{2}$ and $1 + n^2 \le 2n^2$ so that for $n \ge 2$ we have $\frac{n+\sin n}{n^2+1} \ge \frac{n/2}{2n^2} = \frac{1}{4n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the comparison test the given series diverges as well. (d) $1 + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \frac{1}{7^2} + \cdots$

Solution: Let a_n be the *n*th term of the series (which is positive) so that $a_n = \begin{cases} \frac{1}{n^2} & n \text{ odd} \\ \frac{1}{n^3} & n \text{ even} \end{cases}$ For $n \ge 1$ we have $\frac{1}{n^3} \le \frac{1}{n^2}$ so $a_n \le \frac{1}{n^2}$ in any case. Now $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test (p=2>1) so by the comparison test the series $\sum_{n=1}^{\infty} a_n$ converges as well.

2. LIMIT COMPARISON TEST

- (2) Determine, with explanation, whether the following series converge or diverge.
 - (a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$

Solution: We have $\lim_{n\to\infty} \frac{1}{n}/\frac{1}{\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{\sqrt{n^2+1}}{n} = \lim_{n\to\infty} \sqrt{1+\frac{1}{n^2}} = 1$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the limit comparison test our series dinverges as well

(b) (Final 2013, variant) $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \frac{1}{121} + \cdots$ Solution: The series is $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$ and has positive terms. The *n*th odd number is 2n-1 so the series is

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \, .$$

Now $\lim_{n\to\infty} \frac{1}{n^2} / \frac{1}{(2n-1)^2} = \lim_{n\to\infty} \left(\frac{2n-1}{n}\right)^2 = \lim_{n\to\infty} \left(2-\frac{1}{n}\right)^2 = 4$. The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test (p=2>1) so by the limit comparison test our series converges too.

Date: 11/3/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^2}$ Solution: We have

$$\lim_{n \to \infty} \frac{n + \sin n}{n^2 + 1} / \frac{1}{n} = \lim_{n \to \infty} \frac{1 + \frac{\sin n}{n^2}}{1 + \frac{1}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{\sin n}{n^2}}{1 + \lim_{n \to \infty} \frac{1}{n^2}}$$

Now $\lim_{n\to\infty} \frac{1}{n^2} = 0$. Since $-1 \le \sin n \le 1$, we have $-\frac{1}{n^2} \le \frac{\sin n}{n^2} \le \frac{1}{n^2}$ and $\lim_{n\to\infty} \left(-\frac{1}{n^2}\right) = -\lim_{n\to\infty} \frac{1}{n^2} = 0$ also so by the squeeze theorem, $\lim_{n\to\infty} \frac{\sin n}{n^2} = 0$. It follows that

$$\lim_{n \to \infty} \frac{n + \sin n}{n^2 + 1} / \frac{1}{n} = \frac{1 + 0}{1 + 0} = 1.$$

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the limit comparison test the given series diverges as well.