Math 101 – WORKSHEET 25 THE INTEGRAL TEST

1. Review of improper integrals

(1) Show that $\int_2^\infty \frac{\mathrm{d}x}{x}$ diverges.

- (2) Show that $\int_2^\infty \frac{\mathrm{d}x}{x^3+5}$ converges.
- (3) Evaluate $\int_0^\infty x e^{-x} \, \mathrm{d}x$.

2. Applying the integral test

- (4) Decide if each series converges or diverges (a) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (your answer will depend on p!)
 - (b) $\sum_{n=1}^{\infty} \frac{n}{e^n}$
 - (c) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ (your answer will depend on p!)
 - (d) $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$
- (5) The integral $\int_{2}^{\infty} \frac{x + \sin x}{1 + x^2} dx$ diverges. Why can't we use the integral test to conclude that $\sum_{n=2}^{\infty} \frac{n + \sin n}{1 + n^2}$ diverges as well?

Date: 9/3/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

3. TAIL ESTIMATES (NOT EXAMINABLE)

(6) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^2} \leq \frac{1}{N}$.

(b) How many terms to we need to include to get an answer accurate to 10^{-5} ?

(7) (The harmonic series) (a) Show that $\sum_{n=1}^{N} \frac{1}{n} \ge \log(N+1)$

(b) Show that $\sum_{n=1}^{N} \frac{1}{n} \le (1 - \log 2) + \log(N + 1)$