Math 101 - SOLUTIONS TO WORKSHEET 25 THE INTEGRAL TEST

1. REVIEW OF IMPROPER INTEGRALS

(1) Show that $\int_{2}^{\infty} \frac{\mathrm{d} x}{x}$ diverges.

Solution: $\int_{2}^{T} \frac{\mathrm{~d} x}{x}=\log T-\log 2 \xrightarrow[T \rightarrow \infty]{\longrightarrow} \infty$
(2) Show that $\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{3}+5}$ converges.

Solution: For $x>0$ we have $x^{3}+5>x^{3}>0$ so $0<\frac{1}{x^{3}+5}<\frac{1}{x^{3}}$ and $\int_{2}^{T} \frac{\mathrm{~d} x}{x^{3}}=\frac{1}{2}\left(\frac{1}{2^{2}}-\frac{1}{T^{2}}\right) \xrightarrow[T \rightarrow \infty]{ }$
$\frac{1}{8}$ so the integral converges by the comparison test.
(3) Evaluate $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$.

Solution: We integrate by parts:

$$
\begin{aligned}
\int_{0}^{T} x e^{-x} \mathrm{~d} x & =\left[-x e^{-x}\right]_{0}^{T}-\int_{0}^{T}\left(-e^{-x}\right) \mathrm{d} x=-T e^{-T}+\left[e^{-x}\right]_{0}^{T}=1-T e^{-T}-e^{-T} \\
& =1-\frac{T+1}{e^{T}}
\end{aligned}
$$

Now as $T \rightarrow \infty$ by l'Hôpital,

$$
\lim _{T \rightarrow \infty} \frac{T+1}{e^{T}}=\lim _{T \rightarrow \infty} \frac{1}{e^{T}}=0
$$

so

$$
\int_{0}^{\infty} x e^{-x} \mathrm{~d} x=\lim _{T \rightarrow \infty} \int_{0}^{T} x e^{-x} \mathrm{~d} x=1
$$

2. Applying the integral test

(4) Decide if each series converges or diverges
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ (your answer will depend on $p!$)

Solution: For $p \leq 0, \frac{1}{n^{p}}$ does not decay to zero and the series diverges by the divergence test. Let $f(x)=\frac{1}{x^{p}}$ so that the series is $\sum_{n=1}^{\infty} f(n)$. The function f is decreasing and positive, so by the integral test the series converges iff $\int_{1}^{\infty} f(x) \mathrm{d} x$ converges, that is iff $p>1$ by the p-test.
(b) $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$

Solution: Let $f(x)=x e^{-x}$, so that the series is $\sum_{n=1}^{\infty} f(n)$. Then $f(x)>0$ for all x. Also, we have $f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}$ which is negative for $x>1$ so f is eventually decreasing. We know that $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$ converges (see problem 3) so by the integral test our series converges as well.
(c) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ (your answer will depend on p !)

Solution: Suppose $p>0$ (if $p \leq 0$ compare with $\sum_{n=1}^{\infty} \frac{1}{n}-$ see next lecture). Let $f(x)=$ $\frac{1}{x(\log x)^{p}}$ which is clearly positive and decreasing. so that the series is $\sum_{n=1}^{\infty} f(n)$. The function f is clearly both positive and decreasing, so by the integral test the series converges iff $\int_{2}^{\infty} f(x) \mathrm{d} x$ converges. We consider

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x(\log x)^{p}}
$$

Susbtituting $u=\log x$ we have $\frac{\mathrm{d} x}{x}=\mathrm{d} u$ and $u \rightarrow \infty$ as $x \rightarrow \infty$ so we have

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x(\log x)^{p}}=\int_{2}^{\infty} \frac{\mathrm{d} u}{u^{p}}
$$

which converges when $p>1$ and diverges otherwise. By the integral test the same holds for our series.
(d) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Solution: Let $f(x)=\frac{1}{1+x^{2}}$ which is clearly positive and decreasing. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ does. But

$$
\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}=\lim _{T \rightarrow \infty}(\arctan (T)-\arctan (1))=\lim _{T \rightarrow \infty} \arctan (T)-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

so the integtral and the series converge.
Solution: Let $f(x)=\frac{1}{1+x^{2}}$ which is clearly positive and decreasing. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ does. Converges does not depend on the starting point so we consider $\int_{1}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x$. Now $\frac{1}{1+x^{2}}<\frac{1}{x^{2}}$ and $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}$ converges by the p-test $(2>1)$ so $\int_{1}^{\infty} \frac{d x}{1+x^{2}}$ converges by the comparison test, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges by the integral test.
(5) The integral $\int_{2}^{\infty} \frac{x+\sin x}{1+x^{2}} \mathrm{~d} x$ diverges. Why can't we use the integral test to conlcude that $\sum_{n=2}^{\infty} \frac{n+\sin n}{1+n^{2}}$ diverges as well?

Solution: The function $f(x)=\frac{x+\sin x}{1+x^{2}}$ isn't monotone:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\cos x)\left(1+x^{2}\right)-2 x(x+\sin x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(1+\cos x-2) x^{2}-2 x \sin x+1+\cos x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(\cos x-1) x^{2}-2 x \sin x+1+\cos x}{(1+x)^{2}}
\end{aligned}
$$

In particular, if $x=2 \pi k(k \in \mathbb{Z})$ then $\cos x=1, \sin x=0$ and

$$
f^{\prime}(x)=\frac{2}{\left(1+x^{2}\right)}>0
$$

We'll later show that this series diverges anyway.

3. Tail estimates (not examinable)

(6) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{N}$.

Solution: The fucntion $f(x)=\frac{1}{x^{2}}$ is decreasing and positive. By the integral test, $\sum_{n=N+1}^{\infty} f(n) \leq$ $\int_{N}^{\infty} f(x) \mathrm{d} x=\left[-\frac{1}{x}\right]_{N}^{\infty}=\frac{1}{N}$.
(b) How many terms to we need to include to get an answer accurate to 10^{-5} ?

Solution: We have $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{N} \frac{1}{n^{2}}+\sum_{n=N+1}^{\infty} \frac{1}{n^{2}}$. If $N=10^{5}$ we see that

$$
0 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{10^{5}} \frac{1}{n^{2}} \leq 10^{-5}
$$

(7) (The harmonic series)
(a) Show that $\sum_{n=1}^{N} \frac{1}{n} \geq \log (N+1)$

Solution: $\quad \sum_{n=1}^{N} \frac{1}{n} \geq \int_{1}^{N+1} \frac{\mathrm{~d} x}{x}=\log (N+1)$.
(b) Show that $\sum_{n=1}^{N} \frac{1}{n} \leq(1-\log 2)+\log (N+1)$

Solution: $\quad \sum_{n=1}^{N} \frac{1}{n} \leq 1+\int_{2}^{N+1} \frac{\mathrm{~d} x}{x}=1+\log (N+1)-\log 2$.

