Math 101 - SOLUTIONS TO WORKSHEET 24 SERIES

1. Skill 1: Geometric series and decimal expansions

(1) (Final 2013) Find the sum of the series $\sum_{n=2}^{\infty} \frac{3 \cdot 4^{n+1}}{8 \cdot 5^{n}}$. Simplify your answer.

Solution: We write this as $\sum_{n=2}^{\infty} \frac{12}{8}\left(\frac{4}{5}\right)^{n}$ so this is a geometric series with ratio $\frac{4}{5}$ and first term $\frac{3}{2}\left(\frac{4}{5}\right)^{2}$. Its sum is therefore

$$
\frac{3}{2} \frac{(4 / 5)^{2}}{1-\frac{4}{5}}=\frac{3 \cdot 16}{2 \cdot 5 \cdot 5 \cdot\left(1-\frac{4}{5}\right)}=\frac{24}{5 \cdot(5-4)}=\frac{24}{5} .
$$

(2) Express each decimal expansion using a geometric series, sum the series, then simplify to obtain a rational number.
(a) $0.333333 \ldots$

Solution: We have $0.33333 \ldots=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\cdots=\frac{3}{10} \cdot \frac{1}{1-\frac{1}{10}}=\frac{3}{9}=\frac{1}{3}$.
(b) $0.5757575757 \ldots$

Solution: This is $\frac{57}{100}+\frac{57}{(100)^{2}}+\frac{57}{(100)^{3}}+\cdots=\frac{57}{100} \cdot \frac{1}{1-\frac{1}{100}}=\frac{57}{99}$.
(c) $0.6545454545454 \ldots$

Solution: Here we have to be more careful:

$$
\begin{aligned}
& 0.6545454545454 \ldots= 0.6+\frac{54}{1000}+\frac{54}{100,000}+\frac{54}{10,000,000}+\cdots=0.6+\frac{54}{1000}\left(1+\frac{1}{100}+\frac{1}{(100)^{2}}+\frac{1}{(100)^{3}}+\cdots\right) \\
&= 0.6+\frac{54}{1000} \cdot \frac{1}{1-\frac{1}{100}}=\frac{6}{10}+\frac{54}{10 \cdot 99}=\frac{3}{5}+\frac{3}{5 \cdot 11}=\frac{3 \cdot 12}{5 \cdot 11}=\frac{36}{55} . \\
& \text { 2. SKILL 2: TELECOPING SERIES }
\end{aligned}
$$

(3) Write an expression for the partial sums, decide if the series converges, and if so determine the sum.
(a) $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$

Solution: We have $\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}$ (partial fractions). Writing the partial sum

$$
\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right)
$$

we see that every fraction appears twice (with opposite signs) except for $1, \frac{1}{2},-\frac{1}{n+1},-\frac{1}{n+2}$ so

$$
s_{n}=1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2} .
$$

Thus

$$
\lim _{n \rightarrow \infty} s_{n}=\frac{3}{2}-0-0=\frac{3}{2}
$$

and the series converges.
(b) $\sum_{n=0}^{\infty}(\tan (n)-\tan (n+1))$

Solution: The function oscillates and the sequence is divergent.
(c) $\sum_{n=1}^{\infty}\left(n^{2}-(n+1)^{2}\right)$

Solution: The nth partial sum is $\left(1^{2}-2^{2}\right)+\left(2^{2}-3^{2}\right)+\cdots+\left(n^{2}-(n+1)^{2}\right)=1^{2}-(n+1)^{2}$ and these clearly tend to $-\infty$ as $n \rightarrow \infty$ so the series diverges.

