Math 101 - WORKSHEET 21 SEPARABLE DIFFERENTIAL EQUATIONS

1. What is A DE?

(1) Consider the differential equation $y^{\prime}=3 y^{2}$
(a) For which values of C, D is $f(x)=C x^{D}$ a solution to the equation?
(b) Suppose $f(x)$ is a solution. Show that $f(x-a)$ is also a solution for any a. What is the solution with $f(0)=1$?

2. Separation of variables

(2) Solve the follwing equations using separation of variables
(a) $y^{\prime}=x^{3}$
(b) $y^{\prime}=5 y$
(c) (Final, 2012) $y^{\prime}=x y, y(0)=e$.
(3) (Final 2014) Find the solution of the DE $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=y^{2}$ that satisfies $y(1)=-1$.
(4) A physical system satisfies the equation $\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=E$. There m, k, E are constants (mass, spring constant, energy, respectively) and $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ is the velocity.
(a) Solve the equation to obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=v=$
(b) Suppose $m=k=1$ and $E=\frac{1}{2}$. Integrate both sides of $\frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\mathrm{d} t$ and find a formula for $x=x(t)$.
(c) Solve the problem for general m, k, E.

