Math 101 - WORKSHEET 19 IMPROPER INTEGRALS

1. Improper at infinity

- (1) For which values of p does $\int_1^\infty \frac{1}{x^p} dx$ converge? Diverge?
- (2) (Final, 2010) Evaluate $\int_{-\infty}^{-1} e^{2x} dx$. Simplify your answer as much as possible.
- (3) Find a constant C such that $\int_{-\infty}^{+\infty} \frac{C \, dx}{1+x^2} = 1$.
- (4) We study $\int_{-\infty}^{+\infty} x \, dx$. (a) Evaluate $\int_{-T}^{T} x \, dx$. (b) Evaluate $\lim_{T \to \infty} \int_{-T}^{T} x \, dx$. (c) Does the integral converge?
- (5) (Final, 2009) For what values of p does $\int_e^\infty \frac{\mathrm{d}x}{x(\log x)^p}$ converge?

2. Improper at finite points

- (6) For which values of p does $\int_0^1 \frac{dx}{x^p}$ converge?
- (7) (Math 103 Final, 2013) Evaluate the integral if it exists, otherwise show that it doesn't: $I = \int_0^2 \frac{dx}{1-x^2}$.

3. Comparison of integrals

- (7) Decide which of the following integrals converge (a) (103 Final, 2012) $\int_1^\infty \frac{1+\sin x}{x^2} dx$.
 - (b) $\int_1^\infty \frac{3 \cos x}{x} \, \mathrm{d}x.$
 - (c) (Bell curve) $\int_{-\infty}^{+\infty} e^{-x^2} dx$
 - (d) $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x} + \sin x}$
 - (e) (hard) $\int_0^1 \frac{dx}{x^2 + x^3}$
 - (f) (hard) $\int_0^\infty \frac{x^{1000}}{e^x} dx$