Math 101 - SOLUTIONS TO WORKSHEET 19 IMPROPER INTEGRALS

1. Improper at infinity

(1) For which values of p does $\int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{~d} x$ converge? Diverge?

Solution: For $p \neq-1$ we have $\int_{1}^{T} \frac{1}{x^{p}} \mathrm{~d} x=\left[\frac{1}{1-p} x^{1-p}\right]_{1}^{T}=\frac{1}{1-p}\left(T^{1-p}-1\right)$. If $1-p>0$ then $T^{1-p} \rightarrow \infty$ so the integral diverges. If $1-p<0$ then $T^{1-p} \rightarrow 0$ and the integral converges. If $1-p=0$ then $\int_{1}^{T} \frac{1}{x^{p}} \mathrm{~d} x=[\log x]_{1}^{T}=\log T \rightarrow \infty$ and the integral diverges.
(2) (Final, 2010) Evaluate $\int_{-\infty}^{-1} e^{2 x} \mathrm{~d} x$. Simplify your answer as much as possible.

Solution: $\quad \int_{T}^{-1} e^{2 x} \mathrm{~d} x=\left[\frac{1}{2} e^{2 x}\right]_{x=T}^{x=-1}=\frac{1}{2}\left(e^{-2}-e^{T}\right)$. Now $\lim _{T \rightarrow-\infty} e^{2 T}=\lim _{x \rightarrow-\infty} e^{x}=0$ so

$$
\int_{-\infty}^{-1} e^{2 x} \mathrm{~d} x=\lim _{T \rightarrow-\infty} \frac{1}{2}\left(e^{-2}-e^{2 T}\right)=\frac{1}{2} e^{-2}
$$

Solution: $\quad \int_{-T}^{-1} e^{2 x} \mathrm{~d} x=\left[\frac{1}{2} e^{2 x}\right]_{x=-T}^{x=-1}=\frac{1}{2}\left(e^{-2}-e^{-T}\right)$. Now $\lim _{T \rightarrow \infty} e^{-2 T}=\lim _{x \rightarrow \infty} e^{-x}=0$ so

$$
\int_{-\infty}^{-1} e^{2 x} \mathrm{~d} x=\lim _{T \rightarrow \infty} \frac{1}{2}\left(e^{-2}-e^{-2 T}\right)=\frac{1}{2} e^{-2}
$$

(3) Find a constant C such that $\int_{-\infty}^{+\infty} \frac{C \mathrm{~d} x}{1+x^{2}}=1$.

Solution: $\quad \int_{0}^{T} \frac{C \mathrm{~d} x}{1+x^{2}}=C[\arctan x]_{x=0}^{x=T}=C \arctan T$ so $\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}=C \lim _{T \rightarrow \infty} \arctan T=\frac{\pi}{2} C$. Since the function is symmetric we also have $\int_{-\infty}^{0} \frac{C \mathrm{~d} x}{1+x^{2}}=\frac{\pi}{2} C$ so

$$
\int_{-\infty}^{+\infty} \frac{C \mathrm{~d} x}{1+x^{2}}=\pi C
$$

and we need to take $C=\frac{1}{\pi}$.
(4) We study $\int_{-\infty}^{+\infty} x \mathrm{~d} x$.
(a) Evaluate $\int_{-T}^{T} x \mathrm{~d} x$.
(b) Evaluate $\lim _{T \rightarrow \infty} \int_{-T}^{T} x \mathrm{~d} x$.
(c) Does the integral converge?

Solution: $\int_{T}^{-T} x \mathrm{~d} x=0$ since the integrand is odd, so $\lim _{T \rightarrow \infty} \int_{-T}^{T} x \mathrm{~d} x=0$. Nevertheless the integral diverges: $\int_{0}^{\infty} x \mathrm{~d} x$ diverges, as does $\int_{-\infty}^{0} x \mathrm{~d} x$.
(5) (Final, 2009) For what values of p does $\int_{e}^{\infty} \frac{\mathrm{d} x}{x(\log x)^{p}}$ converge?

Solution: We note that $\frac{\mathrm{d} x}{x}=d(\log x)$, so letting $u=\log x$ we have $\int_{x=e}^{x=T} \frac{\mathrm{~d} x}{x(\log x)^{p}}=\int_{1}^{\log T} \frac{\mathrm{~d} u}{u^{p}}$. Now as $T \rightarrow \infty, \log T \rightarrow \infty$ as well, so this converges exactly when $\int_{1}^{\infty} \frac{d u}{u^{p}}$ converges, that is exactly for $p>1$.

2. Improper at finite points

(6) For which values of p does $\int_{0}^{1} \frac{\mathrm{~d} x}{x^{p}}$ converge?

Solution: For $p \neq 1$ we have $\int_{\epsilon}^{1} \frac{\mathrm{~d} x}{x^{p}}=\left[\frac{x^{1-p}}{1-p}\right]_{\epsilon}^{1}=\frac{1}{1-p}-\frac{\epsilon^{1-p}}{1-p}$. Now as $\epsilon \rightarrow 0$,

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{1-p}= \begin{cases}0 & 1-p>0 \\ \infty & 1-p<0\end{cases}
$$

so $\int_{0}^{1} \frac{d x}{x^{p}}$ exists when $p<1$ and diverges when $p>1$. For $p=1$ we have $\int_{\epsilon}^{1} \frac{\mathrm{~d} x}{x}=-\log \epsilon \underset{\epsilon \rightarrow 0}{\longrightarrow} \infty$ and the integral diverges as well.
(7) (Math 103 Final, 2013) Evaluate the integral if it exists, otherwise show that it doesn't: $I=\int_{0}^{2} \frac{\mathrm{~d} x}{1-x^{2}}$.

Solution: The function $\frac{1}{1-x^{2}}$ is discountinuous at $x=1$, so we need to consider the convergence of $\int_{0}^{1} \frac{\mathrm{~d} x}{1-x^{2}}$ and $\int_{1}^{2} \frac{\mathrm{~d} x}{1-x^{2}}$ separately. Considering the first integral, for $0 \leq x<1$ we have $\frac{1}{1-x^{2}}=$ $\frac{1}{(1-x)(1+x)} \geq \frac{1}{1-x} \cdot \frac{1}{1+1}$. Now letting $1-x=u$ we have $\int_{x=0}^{x=1} \frac{\mathrm{~d} x}{2(1-x)}=\frac{1}{2} \int_{u=0}^{u=1} \frac{\mathrm{~d} u}{u}$ diverges by the p-test $(p=1)$ so our integral diverges.

Solution: We have $\frac{1}{1-x^{2}}=\frac{1}{2} \frac{1}{1-x}+\frac{1}{2} \frac{1}{1+x}$. The second function is continuous on $[0,2]$ so it's enough to study $\frac{1}{2} \int_{0}^{2} \frac{\mathrm{~d} x}{1-x}$. Changing variables to $u=1-x$ we have

$$
\int_{x=0}^{x=2} \frac{\mathrm{~d} x}{1-x}=\int_{u=1}^{u=-1} \frac{-\mathrm{d} u}{u}=\int_{u=-1}^{u=1} \frac{\mathrm{~d} u}{u}
$$

Now both $\int_{-1}^{0} \frac{\mathrm{~d} u}{u}$ and $\int_{0}^{1} \frac{\mathrm{~d} u}{u}$ diverge by the p-test so the integral diverges.

3. Comparison of integrals

(7) Decide which of the following integrals converge
(a) (103 Final, 2012) $\int_{1}^{\infty} \frac{1+\sin x}{x^{2}} \mathrm{~d} x$.

Solution: Let $g(x)=\frac{1+\sin x}{x^{2}}$. Since $\sin x \geq-1$ for all x we have $g(x) \geq \frac{1+(-1)}{x^{2}}=0$. Since $\sin x \leq 1$ for all x we have $g(x) \leq \frac{1+1}{x^{2}}=\frac{2}{x^{2}}$. Now $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}$ converges by the p-test $(p=2>1)$ so $\int_{1}^{\infty} \frac{2 \mathrm{~d} x}{x^{2}}$ converges as well. By the comparison test it follows that $\int_{1}^{\infty} g(x) \mathrm{d} x$ converges.
$\int_{1}^{3-\cos x} \mathrm{~d} x$.
(b) $\int_{1}^{\infty} \frac{3-\cos x}{x} \mathrm{~d} x$.

Solution: Let $f(x)=\frac{3+\cos x}{x} . \cos x \geq-1$ we for all x we have $f(x) \geq \frac{3+(-1)}{x} \geq \frac{1}{x}$. Now $\int_{1}^{\infty} \frac{\mathrm{d} x}{x}$ diverges by the p-test $(p=2>1)$ so by the comparison test $\int_{1}^{\infty} \frac{3+\cos x}{x} \mathrm{~d} x$ diverges as well.
(c) (Bell curve) $\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x$

Solution: By symmetric (the function is even) it's enough to consider $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x$. Since $\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x$ exists, it's enough to consider $\int_{1}^{\infty} e^{-x^{2}} \mathrm{~d} x$. But for $x \geq 1, x^{2} \geq x$ so $e^{-x^{2}} \leq e^{-x}$. Now $\int_{0}^{\infty} e^{-x} \mathrm{~d} x$ converges (exponential function fact) and $e^{-x^{2}} \geq 0$ for all x, so by the comparison test $\int_{1}^{\infty} e^{-x^{2}} \mathrm{~d} x$ converges. It follows that $\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x$ converges as well.
(d) $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}+\sin x}$

Solution: The function is continuous on $(0,1]$ and since $1<\pi$ we have $0<\sin x$ on that interval. It follows that $\sqrt{x}+\sin x>\sqrt{x}>0$ and thus $0<\frac{1}{\sqrt{x}+\sin x}<\frac{1}{\sqrt{x}}$ on our interval. Now $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}}$ converges by the p-test $\left(p=\frac{1}{2}<1\right)$ so by the comparison test the given integral converges as well.
(e) (hard) $\int_{0}^{1} \frac{\mathrm{~d} x}{x^{2}+x^{3}}$

Solution: Multiplying the inequality $0<x \leq 1$ by x^{2} we see that $x^{3}<x^{2}$. It follows that $x^{2}+x^{3} \leq 2 x^{2}$ so that $\frac{1}{x^{2}+x^{3}} \geq \frac{1}{2 x^{2}}$. Now $\int_{0}^{1} \frac{\mathrm{~d} x}{2 x^{2}}=\frac{1}{2} \int_{0}^{1} \frac{\mathrm{~d} x}{x^{2}}$ diverges by the p-test $(p=2>1)$ so by the comparison test the given integral diverges as well.
(f) (hard) $\int_{0}^{\infty} \frac{x^{1000}}{e^{x}} \mathrm{~d} x$

Solution: Any exponential function grows faster than any polynomial function, so that $x^{1000} \leq$ $e^{x / 2}$ for x large enough (1000 applications of l'Hôpital's rule will show $\lim _{x \rightarrow \infty} \frac{x^{1000}}{e^{x / 2}}=0$). It follows that $\frac{x^{1000}}{e^{x}}=\frac{x^{1000}}{e^{x / 2}} \cdot \frac{1}{e^{x / 2}} \leq \frac{1}{e^{x / 2}}$ for x large enough. But $\int_{0}^{\infty} \frac{1}{e^{x / 2}} \mathrm{~d} x$ exists (expoential decay), so the given integral exists as well.

