Math 101 – WORKSHEET 17 APPROXIMATE INTEGRATION

1. Approximate integration

(1) Let $f(x) = \sin(x^2)$. Estimate $\int_0^1 f(x) dx$ using the trapezoid rule, the midpoint rule, and Simpson's rule, with n = 4 in all cases. You may leave your answers in calculator-ready form.

(2) (Final 2009) Give the Simpson's rule approximation to $\int_0^2 \sin(e^x) dx$ using 4 equal subintervals.

(3) (Final 2012) Let I = ∫₁² 1/x dx.
(a) Write down Simpson's rule approximation for I using 4 points (call it S₄)

Date: 12/2/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(b) Without computing I, find an upper bound for $|I - S_4|$. You may use the fact that if $|f^{(4)}(x)| \le K$ on [a, b] then the error in the approximation with n points has magnitude at most $K(b - a)^5/180n^4$.

(4) (Final 2008) Let $I = \int_0^1 \cos(x^2) dx$. It can be shown that the fourth derivative of $\cos(x^2)$ has absolute value at most 60 on [0, 1]. Find *n* such the Simpson's rule approximation to *I* using *n* points has error less than or equal to 0.001. You may use that that if $|f^{(4)}(t)| \leq K$ for $a \leq t \leq b$ then error in using Simpson's rule to approximate $\int_a^b f(x) dx$ has absolute value less than or equal to $K(b-a)^5/180n^4$.

(5) Let $I = \int_4^6 \sin(\sqrt{x}) dx$. Find *n* such that estimating *I* using the midpoint rule and *n* points will have an error of at most $\frac{1}{3000}$. You may use that the absolute error in estimating $\int_a^b f(x) dx$ using the midpoint rule and *n* points is at most $K(b-a)^3/24n^2$ where $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$.