Math 101 - SOLUTIONS TO WORKSHEET 17 APPROXIMATE INTEGRATION

1. Approximate integration

(1) Let $f(x)=\sin \left(x^{2}\right)$. Estimate $\int_{0}^{1} f(x) \mathrm{d} x$ using the trapezoid rule, the midpoint rule, and Simpson's rule, with $n=4$ in all cases. You may leave your answers in calculator-ready form.

Solution: With $n=4$ we have $\Delta x=\frac{1}{4}$ and the points $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$, so the approximations are:

$$
\begin{aligned}
\int_{0}^{1} f(x) \mathrm{d} x & \approx \frac{1}{8}\left(\sin \left(0^{2}\right)+2 \sin \left(\left(\frac{1}{4}\right)^{2}\right)+2 \sin \left(\left(\frac{1}{2}\right)^{2}\right)+2 \sin \left(\left(\frac{3}{4}\right)^{2}\right)+\sin \left(1^{2}\right)\right) \\
& =\frac{1}{8}\left(2 \sin \left(\frac{1}{16}\right)+2 \sin \left(\frac{1}{4}\right)+2 \sin \left(\frac{9}{16}\right)+\sin (1)\right) \\
& \int_{0}^{1} f(x) \mathrm{d} x \approx \frac{1}{4}\left(\sin \left(\left(\frac{1}{8}\right)^{2}\right)+\sin \left(\frac{9}{64}\right)+\sin \left(\frac{25}{64}\right)+\sin \left(\frac{49}{64}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} f(x) \mathrm{d} x & \approx \frac{1}{12}\left(\sin (0)+4 \sin \left(\frac{1}{16}\right)+2 \sin \left(\frac{1}{4}\right)+4 \sin \left(\frac{9}{16}\right)+\sin (1)\right) \\
& =\frac{1}{12}\left(4 \sin \left(\frac{1}{16}\right)+2 \sin \left(\frac{1}{4}\right)+4 \sin \left(\frac{9}{16}\right)+\sin (1)\right)
\end{aligned}
$$

(2) (Final 2009) Give the Simpson's rule approximation to $\int_{0}^{2} \sin \left(e^{x}\right) \mathrm{d} x$ using 4 equal subintervals.

Solution: Here $\Delta x=\frac{2}{4}=\frac{1}{2}$, the points are $0, \frac{1}{2}, 1, \frac{3}{2}, 2$ and so the approximation is

$$
\frac{1}{6}\left(\sin \left(e^{0}\right)+4 \sin \left(e^{1 / 2}\right)+2 \sin \left(e^{1}\right)+4 \sin \left(e^{3 / 2}\right)+\sin \left(e^{2}\right)\right)
$$

which is

$$
\frac{1}{6}\left(\sin (1)+4 \sin \left(e^{1 / 2}\right)+2 \sin (e)+4 \sin \left(e^{3 / 2}\right)+\sin \left(e^{2}\right)\right)
$$

(3) (Final 2012) Let $I=\int_{1}^{2} \frac{1}{x} \mathrm{~d} x$.
(a) Write down Simpson's rule approximation for I using 4 points (call it S_{4})

Solution: $\quad S_{4}=\frac{1}{12}\left(\frac{1}{1}+4 \frac{1}{5 / 4}+2 \frac{1}{3 / 2}+4 \frac{1}{7 / 4}+\frac{1}{2}\right)$.
It was not required to do the arithmetic, but for the record we note (since $210=2 \cdot 3 \cdot 5 \cdot 7$):

$$
\begin{aligned}
S_{4} & =\frac{1}{12}\left(1+\frac{16}{5}+\frac{4}{3}+\frac{16}{7}+\frac{1}{2}\right) \\
& =\frac{1}{12} \cdot \frac{210+42 \cdot 16+70 \cdot 3+30 \cdot 16+105}{210} \\
& =\frac{1677}{2520}
\end{aligned}
$$

(b) Without computing I, find an upper bound for $\left|I-S_{4}\right|$. You may use the fact that if $\left|f^{(4)}(x)\right| \leq$ K on $[a, b]$ then the error in the approximation with n points has magnitude at most $K(b-$ $a)^{5} / 180 n^{4}$.

[^0]Solution: We have $f^{\prime}(x)=-\frac{1}{x^{2}}, f^{(2)}(x)=\frac{2}{x^{3}}, f^{(3)}(x)=-\frac{6}{x^{4}}$ and $f^{(4)}(x)=\frac{24}{x^{5}}$. On the interval $[1,2]$, the function $\frac{24}{x^{5}}$ is decreasing so $\left|f^{(4)}(x)\right| \leq \frac{24}{1}=24$. It follows that the error is at most

$$
\frac{24(2-1)^{5}}{180 \cdot 4^{4}}=\frac{24}{180 \cdot 256}=\frac{1}{60 \cdot 32}=\frac{1}{1960}
$$

(4) (Final 2008) Let $I=\int_{0}^{1} \cos \left(x^{2}\right) \mathrm{d} x$. It can be shown that the fourth derivative of $\cos \left(x^{2}\right)$ has absolute value at most 60 on $[0,1]$. Find n such the Simpson's rule approximation to I using n points has error less than or equal to 0.001 . You may use that that if $\left|f^{(4)}(t)\right| \leq K$ for $a \leq t \leq b$ then error in using Simpson's rule to approximate $\int_{a}^{b} f(x) \mathrm{d} x$ has absolute value less than or equal to $K(b-a)^{5} / 180 n^{4}$.

Solution: For $f(x)=\cos \left(x^{2}\right)$ we are given that $\left|f^{(4)}(x)\right| \leq 60$ for $1 \leq x \leq 2$, so we need n such that $\frac{60 \cdot(1-0)^{5}}{180 n^{4}} \leq \frac{1}{1000}$, that is

$$
\frac{1}{3 n^{4}} \leq \frac{1}{1000}
$$

which is the same as

$$
n^{4} \geq \frac{1000}{3}
$$

Now for $n=6$ we have $6^{4}=36 \cdot 36 \geq 30 \cdot 30=900>\frac{1000}{3}$ so $n=6$ suffices.
(5) Let $I=\int_{4}^{6} \sin (\sqrt{x}) \mathrm{d} x$. Find n such that estimating I using the midpoint rule and n points will have an error of at most $\frac{1}{3000}$. You may use that the absolute error in estimating $\int_{a}^{b} f(x) \mathrm{d} x$ using the midpoint rule and n points is at most $K(b-a)^{3} / 24 n^{2}$ where $\left|f^{(4)}(x)\right| \leq K$ for $a \leq x \leq b$.

Solution: Let $f(x)=\sin (\sqrt{x})$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \cos (\sqrt{x})$ so $f^{\prime \prime}(x)=-\frac{1}{4 x^{3 / 2}} \cos (\sqrt{x})-$ $\frac{1}{4 x} \sin (\sqrt{x})$. For $4 \leq x \leq 6$ we have $\frac{1}{4 x^{3 / 2}} \leq \frac{1}{4 \cdot 4^{3 / 2}}=\frac{1}{32}\left(\frac{1}{x^{3 / 2}}\right.$ is decreasing on this interval) and $\frac{1}{4 x} \leq \frac{1}{4 \cdot 4}=\frac{1}{16}$ (for the same reason). Since $|\cos (\sqrt{x})|,|\sin (\sqrt{x})| \leq 1$ for all x, we have

$$
\left|f^{(2)}(x)\right| \leq \frac{1}{32}+\frac{1}{16}=\frac{3}{32} \leq \frac{3}{30}=\frac{1}{10}
$$

for all $4 \leq x \leq 6$. It follows that the error in the approximation is at most

$$
\frac{1}{10} \cdot \frac{(6-4)^{3}}{24 \cdot n^{2}}=\frac{8}{240 n^{2}}=\frac{1}{30 n^{2}}
$$

For $n=10$ the error would be at most $\frac{1}{30 \cdot 100}=\frac{1}{3000}$ so that is enough.

[^0]: Date: $12 / 2 / 2016$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

