Math 101 - WORKSHEET 16 PARTIAL FRACTIONS, APPROXIMATE INTEGRATION

1. Partial fractions expansion

(1) Apply Method 2 to find A, B, C such that

$$
\frac{6 x^{2}-26 x+26}{x^{3}-6 x^{2}+11 x-6}=\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}
$$

(2) Now consider $\frac{8 x-10}{4 x^{3}-4 x^{2}+5 x}=\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}=\frac{A}{x}+\frac{B x+C}{4 x^{2}-4 x+5}$
(a) Find A using method 2
(b) Calculate $\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}-\frac{A}{x}$ to find B, C.
(3) Finally consider $\frac{x^{2}}{(x+2)(2 x-3)}$. Can we have A, B such that $x^{2}=A(x+2)+B(2 x-3)$?

2. Approximate integration

Let $f(x)=\sin \left(x^{2}\right)$. Estimate $\int_{0}^{1} f(x) \mathrm{d} x$ using the trapezoid rule, the midpoint rule, and Simpson's rule, with $n=4$ in all cases. You may leave your answers in calculator-ready form.

