Math 101 - WORKSHEET 15 INTEGRATION USING PARTIAL FRACTIONS

1. Tail end of Trig Substitution
(1) (105 Final, $2014+101$ Final, 2009) Convert $\int\left(3-2 x-x^{2}\right)^{-3 / 2} \mathrm{~d} x$ to a trigonometric integral.
2. Partial fractions: Preliminaries
(1) (Polynomials)
(a) Which of the following is irreducible? $x^{2}+7, x^{2}-7,2 x^{2}+3 x-4,2 x^{2}+3 x+4$.
(b) Factor the polynomials $x^{2}-3 x+2, x^{3}-4 x$.
(2) (Preliminaries 2) Evaluate
(a) $\int \frac{\mathrm{d} x}{3 x+4}=$
(b) $\int \frac{\mathrm{d} x}{(3 x+4)^{3}}=$
(c) $\int \frac{8 x}{4 x^{2}-4 x+5} \mathrm{~d} x=\int \frac{8 x}{\left((2 x-1)^{2}+4\right)} \mathrm{d} x=$

3. Partial fractions expansion

(1) Find A, B such that $\frac{5 x+3}{(x+2)(2 x-3)}=\frac{A}{x+2}+\frac{B}{2 x-3}$:

- Clear denominators to get $5 x+3=$
- (Method 1) Simplify and solve for A, B.
(2) Apply Method 2 to find A, B, C such that $\frac{6 x^{2}-26 x+26}{x^{3}-6 x^{2}+11 x-6}=\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$.
(3) Now consider $\frac{8 x-10}{4 x^{3}-4 x^{2}+5 x}=\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}=\frac{A}{x}+\frac{B x+C}{4 x^{2}-4 x+5}$
(a) Find A using method 2
(b) Calculate $\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}-\frac{A}{x}$ to find B, C.
(4) Finally consider $\frac{x^{2}}{(x+2)(2 x-3)}$. Can we have A, B such that $x^{2}=A(x+2)+B(2 x-3)$?

