Math 101 - SOLUTIONS TO WORKSHEET 15 INTEGRATION USING PARTIAL FRACTIONS

1. Tail end of Trig Substitution

(1) (105 Final, $2014+101$ Final, 2009) Convert $\int\left(3-2 x-x^{2}\right)^{-3 / 2} \mathrm{~d} x$ to a trigonometric integral.

Solution: We complete the square: $3-2 x-x^{2}=3+1-\left(1+2 x+x^{2}\right)=4-(x+1)^{2}$. So if we set $x+1=2 \sin \theta$ we'd have $4-(x+1)^{2}=4-4 \sin ^{2} \theta=4 \cos ^{2} \theta$. Since $x=1+2 \sin \theta$ we have $\mathrm{d} x=2 \cos \theta$ and we get

$$
\begin{aligned}
\int\left(3-2 x-x^{2}\right)^{-3 / 2} \mathrm{~d} x & =\int\left(4-4 \sin ^{2} \theta\right)^{-3 / 2} 2 \cos \theta \mathrm{~d} \theta \\
& =\frac{2}{4^{3 / 2}} \int\left(\cos ^{2} \theta\right)^{-3 / 2} \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{4} \int \sec ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

2. Partial fractions: Preliminaries

(1) (Polynomials)
(a) Which of the following is irreducible? $x^{2}+7, x^{2}-7,2 x^{2}+3 x-4,2 x^{2}+3 x+4$.

Solution: Recall that $a x^{2}+b x+c$ is reducible iff $\Delta=b^{2}-4 a c \geq 0$, so $x^{2}+7,2 x^{2}+3 x-4$ are reducible.
(b) Factor the polynomials $x^{2}-3 x+2, x^{3}-4 x$.

Solution: $\quad x^{2}-3 x+2=(x-1)(x-2), x^{3}-4 x=x\left(x^{2}-4\right)=x(x-2)(x+2)$.
(2) (Preliminaries 2) Evaluate
(a) $\int \frac{\mathrm{d} x}{3 x+4}=$

Solution: Let $u=3 x+4, \mathrm{~d} u=3 \mathrm{~d} x$. We have $\int \frac{\mathrm{d} x}{3 x+4}=\frac{1}{3} \int \frac{\mathrm{~d} u}{u}=\frac{1}{3} \log |u|+C=$ $\frac{1}{3} \log |3 x+4|+C$.
Solution: This is $\frac{1}{3} \int \frac{\mathrm{~d} x}{x+4 / 3}=\frac{1}{3} \log \left|x+\frac{4}{3}\right|+C$.
PUZZLE: can you reconicle the seemingly distinct answers?
(b) $\int \frac{\mathrm{d} x}{(3 x+4)^{3}}=$

Solution: Let $u=3 x+4, \mathrm{~d} u=3 \mathrm{~d} x$. We have $\int \frac{\mathrm{d} x}{(3 x+4)^{2}}=\frac{1}{3} \int \frac{\mathrm{~d} u}{u^{2}}=\frac{1}{3 u}+C=-\frac{1}{3(3 x+4)}+C$.
(c) $\int \frac{8 x}{4 x^{2}-4 x+5} \mathrm{~d} x=\int \frac{8 x}{\left((2 x-1)^{2}+4\right)} \mathrm{d} x=$

Solution: Let $u=4 x^{2}-4 x+5$. Then $\mathrm{d} u=8 x-4$. We therefore split our integral as:
$\int \frac{8 x}{4 x^{2}-4 x+5} \mathrm{~d} x=\int \frac{8 x-4+4}{4 x^{2}-4 x+5} \mathrm{~d} x=\int \frac{(8 x-4) \mathrm{d} x}{4 x^{2}-4 x+5}+\int \frac{4 \mathrm{~d} x}{\left((2 x-1)^{2}+4\right)}$.
In the first integral we substitute $u=4 x^{2}-4 x+5$ as planned. We recognize the second as an instance of $x^{2}+a^{2}$ and substitute $2 x-1=2 \tan \theta$ so that $2 \mathrm{~d} x=2 \sec ^{2} \theta \mathrm{~d} \theta$ and $\mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta$. We therefore have

$$
\begin{aligned}
\int \frac{8 x}{4 x^{2}-4 x+5} \mathrm{~d} x & =\int \frac{\mathrm{d} u}{u}+4 \int \frac{\sec ^{2} \theta \mathrm{~d} \theta}{\left(4 \tan ^{2} \theta+4\right)} \\
& =\log |u|+\int \frac{\sec ^{2} \theta \mathrm{~d} \theta}{\sec ^{2} \theta}=\log |u|+\theta+C \\
& =\log \left(4 x^{2}-4 x+5\right)+\arctan \left(x-\frac{1}{2}\right)+C
\end{aligned}
$$

(we used here that $\tan \theta=\frac{2 x-1}{2}=x-\frac{1}{2}$ and that $4 x^{2}-4 x+5=(2 x-1)^{2}+4$ is everywhere positive).

3. Partial fractions expansion

(1) Find A, B such that $\frac{5 x+3}{(x+2)(2 x-3)}=\frac{A}{x+2}+\frac{B}{2 x-3}$:

- Clear denominators to get $5 x+3=$
- (Method 1) Simplify and solve for A, B.

Solution: Clear denominators to get $5 x+3=A(2 x-3)+B(x+2)$, simplify to get

$$
5 x+3=(2 A+B) x+(2 B-3 A)
$$

and hence the system of equations

$$
\left\{\begin{array}{ll}
2 A+B & =5 \\
-3 A+2 B & =3
\end{array} .\right.
$$

Subtacting the second equation from twice the first gives $7 A=7$ so $A=1$ and then $B=3$. We verify the solution: $\frac{1}{x+2}+\frac{3}{2 x-3}=\frac{2 x-3+3(x+2)}{(x+2)(2 x-3)}=\frac{5 x+3}{(x+2)(2 x-3)}$.
(2) Apply Method 2 to find A, B, C such that $\frac{6 x^{2}-26 x+26}{x^{3}-6 x^{2}+11 x-6}=\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$.

Solution: We have

$$
\begin{array}{lll}
\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)} & \sim_{1} & \frac{6 \cdot 1^{2}-26 \cdot 1+26}{(x-1)(1-2)(1-3)}=\frac{6}{(x-1)(-1)(-2)}=\frac{3}{x-1} \\
\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)} & \sim_{2} & \frac{6 \cdot 2^{2}-26 \cdot 2+26}{(2-1)(x-2)(2-3)}=\frac{-2}{(-1)(x-2)}=\frac{2}{x-1} \\
\frac{6 x^{2}-26 x+26}{(x-1)(x-2)(x-3)} & \sim_{3} & \frac{6 \cdot 3^{2}-26 \cdot 3+26}{(3-1)(3-2)(x-3)}=\frac{2}{(2)(x-2)}=\frac{1}{x-1}
\end{array}
$$

so $A=3, B=2, C=1$.
(3) Now consider $\frac{8 x-10}{4 x^{3}-4 x^{2}+5 x}=\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}=\frac{A}{x}+\frac{B x+C}{4 x^{2}-4 x+5}$
(a) Find A using method 2

Solution: We have $\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)} \sim_{0} \frac{-10}{x(5)}=\frac{-2}{x}$ so $A=-2$.
(b) Calculate $\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}-\frac{A}{x}$ to find B, C.

Solution: We have

$$
\begin{aligned}
\frac{8 x-10}{x\left(4 x^{2}-4 x+5\right)}-\frac{(-2)}{x} & =\frac{1}{x}\left[\frac{8 x-10}{4 x^{2}-4 x+5}+2\right] \\
& =\frac{1}{x}\left[\frac{8 x-10+2\left(4 x^{2}-4 x+5\right)}{4 x^{2}-4 x+5}\right] \\
& =\frac{1}{x}\left[\frac{8 x^{2}+8 x-8 x-10+10}{4 x^{2}-4 x+5}\right] \\
& =\frac{8 x^{2}}{x\left(4 x^{2}-4 x+5\right)} \\
& =\frac{8 x}{4 x^{2}-4 x+5}
\end{aligned}
$$

so that $B=8$ and $C=0$.
(4) Finally consider $\frac{x^{2}}{(x+2)(2 x-3)}$. Can we have A, B such that $x^{2}=A(x+2)+B(2 x-3)$?

Solution: No, because the degrees don't match.

