Math 101 - SOLUTIONS TO WORKSHEET 7 SUBSTITUTION, AREA BETWEEN CURVES

(1) Evaluate the integrals
(a) (Final, 2013) $\int_{1}^{3}(2 x-1) e^{x^{2}-x} \mathrm{~d} x=$

Solution: Letting $u=x^{2}-x, \mathrm{~d} u=(2 x-1) \mathrm{d} x$ we get $\int_{x=1}^{x=3}(2 x-1) e^{x^{2}-x} \mathrm{~d} x=\int_{u=0}^{u=6} e^{u} \mathrm{~d} u=$ $\left[e^{u}\right]_{u=0}^{u=6}=e^{6}-1$.
Solution: (Alternative) Using $u=x^{2}-x, \mathrm{~d} u=(2 x-1) \mathrm{d} x$ we get $\int(2 x-1) e^{x^{2}-x} \mathrm{~d} x=$ $\int e^{u} \mathrm{~d} u=e^{u}+C=e^{x^{2}-x}+C$ so

$$
\int_{x=1}^{x=3}(2 x-1) e^{x^{2}-x} \mathrm{~d} x=\left[e^{x^{2}-x}\right]_{x=1}^{x=3}=e^{6}-1 .
$$

Solution: (Alternative) Using $u=x^{2}-x, \mathrm{~d} u=(2 x-1) \mathrm{d} x$ we get

$$
\begin{aligned}
\int_{x=1}^{x=3}(2 x-1) e^{x^{2}-x} \mathrm{~d} x & =\int_{x=1}^{x=3} e^{u} \mathrm{~d} u=\left[e^{u}\right]_{x=1}^{x=3} \\
& =\left[e^{x^{2}-x}\right]_{x=1}^{x=3}=e^{6}-1 \\
& =\left[e^{u}\right]_{u=0}^{u=6}=e^{6}-1 .
\end{aligned}
$$

(b) (Final, 2012) $\int_{0}^{3}(x+1) \sqrt{9-x^{2}} \mathrm{~d} x=$

Solution: Write this as $\int_{0}^{3} \sqrt{9-x^{2}} x \mathrm{~d} x+\int_{0}^{3} \sqrt{9-x^{2}} \mathrm{~d} x$. The second term is the area of a quarter-circle of radius 3 , so is $\frac{9}{4} \pi$. For the first term we use $u=9-x^{2}$, $\mathrm{d} u=-2 x \mathrm{~d} x$ to see that

$$
\begin{aligned}
\int_{x=0}^{x=3} \sqrt{9-x^{2}} x \mathrm{~d} x & =\int_{u=9}^{u=0} \sqrt{u}\left(-\frac{1}{2}\right) \mathrm{d} u=\frac{1}{2} \int_{u=0}^{u=9} u^{1 / 2} \mathrm{~d} u \\
& =\frac{1}{2} \frac{2}{3}\left[u^{3 / 2}\right]_{u=0}^{u=9}=\frac{1}{3} 9^{3 / 2}=9
\end{aligned}
$$

In conclusion, $\int_{0}^{3}(x+1) \sqrt{9-x^{2}} \mathrm{~d} x=9+\frac{9}{4} \pi$.
(2) Area between curves
(a) (Final, 2011) Find the total area of the finite place region lying between the curves $y=x$ and $y=x^{3}$.
Solution: The curves intersect where $x=x^{3}$, that is where $x(x+1)(x-1)=0$. On $[-1,0]$ we have $x \leq x^{3} \leq 0$. On $[0,1]$ we have $0 \leq x^{3} \leq x$. By symmetry the areas are equal, and the total area is therefore

$$
\int_{-1}^{0}\left(x^{3}-x\right) \mathrm{d} x+\int_{0}^{1}\left(x-x^{3}\right) \mathrm{d} x=2 \int_{0}^{1}\left(x-x^{3}\right) \mathrm{d} x=2\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

(b) (Final, 2014) Find the area of the finite region bounded between the two curves $y=\sqrt{2} \cos (x \pi / 4)$ and $y=|x|$. It will be useful to sketch the region first.

Solution: We draw a sketch first. conclude that the area is

$$
\begin{aligned}
2 \int_{0}^{1}(\sqrt{2} \cos (x \pi / 4)-x) \mathrm{d} x & =2\left[\sqrt{2} \frac{4}{\pi} \sin \frac{\pi x}{4}-\frac{x^{2}}{2}\right]_{x=0}^{x=1} \\
& =\frac{8 \sqrt{2}}{\pi} \cdot \frac{1}{\sqrt{2}}-2=\frac{8}{\pi}-2
\end{aligned}
$$

