Math 101 – WORKSHEET 5 INDEFINITE INTEGRALS

Theorem (Net change). Suppose f' is continuous. Then $\int_a^b f'(t) dt = f(b) - f(a)$.

- (1) (Net change theorem)
 - (a) A particle moves with velocity $v(t) = \pi \sin(\pi t)$. What is its displacement between the times t = 0 and t = 2?

(b) What is the total distance covered by the particle?

(c) According to Newton's law of universal gravitation, the gravitational acceleration at distance r from a star of mass M is $a(r) = -\frac{GM}{r^2}$. The gravitational potential $\phi(r)$ is defined by $\phi'(r) = -a(r)$. What is the change in the gravitational potential between the surface of the Earth $(R_1 \approx 6,400 \text{km})$ and geostational orbit $(R_2 \approx 42,000 \text{km})$? You may use $M_{\text{earth}} \approx 6 \cdot 10^{24} \text{kg}$ and $G \approx 6.7 \cdot 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s}^2)$.

Date: 13/1/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(2) Find the indefinite integrals (a) For $n \neq -1, \int x^n dx =$

(b)
$$\int \left(\frac{1}{2}x^{3/2} - e^{-x/3} + 7\right) dx =$$

(c)
$$\int_{4}^{9} \left(x^{5/2} + e^{2x} \right) dx =$$

(d)
$$\int x \left(e^{x^2} + 1\right) \mathrm{d}x =$$