Math 101 - SOLUTIONS TO WORKSHEET 5 INDEFINITE INTEGRALS

Theorem (Net change). Suppose f^{\prime} is continuous. Then $\int_{a}^{b} f^{\prime}(t) \mathrm{d} t=f(b)-f(a)$.
(1) (Net change theorem)
(a) A particle moves with velocity $v(t)=\pi \sin (\pi t)$. What is its displacement between the times $t=0$ and $t=2$?
Solution: Say the particle is at position $x(t)$. Then ("net change theorem")

$$
\begin{aligned}
x(2)-x(0) & =\int_{t=0}^{t=2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int_{t=0}^{t=2} v(t) \mathrm{d} t=\int_{t=0}^{t=2} \pi \sin (\pi t) \mathrm{d} t \\
& =[-\cos (\pi t)]_{t=0}^{t=2}=-\cos (2 \pi)+\cos (0)=0
\end{aligned}
$$

The particle is where it started.
(b) What is the total distance covered by the particle?

Solution: For $t \in[0,1]$ the particle is moving to the right, while for $t \in[1,2]$ it is moving to the left. The total distance covered is therefore

$$
\begin{aligned}
\int_{t=0}^{t=1} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t+\int_{t=1}^{t=2}\left(-\frac{\mathrm{d} x}{\mathrm{~d} t}\right) \mathrm{d} t & =[-\cos (\pi t)]_{t=0}^{t=1}-[-\cos (\pi t)]_{t=1}^{t=2} \\
& =(-(-1)-(-1))-[-1-(1)] \\
& =4
\end{aligned}
$$

In the alternative we would start with $\int_{t=0}^{t=2}|v(t)| \mathrm{d} t$ (distance travelled is the integral of the speed), but we'd immediately need to split into domains where $v(t) \geq 0$ and $v(t) \leq 0$, returning to the solution above.
(c) According to Newton's law of universal gravitation, the gravitational acceleration at distance r from a star of mass M is $a(r)=-\frac{G M}{r^{2}}$. The gravitational potential $\phi(r)$ is defined by $\phi^{\prime}(r)=$ $-a(r)$. What is the change in the gravitational potential between the surface of the Earth $\left(R_{1} \approx 6,400 \mathrm{~km}\right)$ and geostational orbit ($R_{2} \approx 42,000 \mathrm{~km}$)? You may use $M_{\text {earth }} \approx 6 \cdot 10^{24} \mathrm{~kg}$ and $G \approx 6.7 \cdot 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$.
Solution: $\quad \phi\left(R_{2}\right)-\phi\left(R_{1}\right)=\int_{R_{1}}^{R_{2}} \phi^{\prime}(r) \mathrm{d} r=-\int_{R_{1}}^{R_{2}} a(r) \mathrm{d} r=\int_{R_{1}}^{R_{2}} \frac{G M}{r^{2}} \mathrm{~d} r=G M\left[-\frac{1}{r}\right]_{R_{1}}^{R_{2}}=$ $\frac{G M}{R_{1}}-\frac{G M}{R_{2}}$. Plugging in the numerical values gives

$$
\phi\left(R_{2}\right)-\phi\left(R_{1}\right) \approx 5.3 \cdot 10^{7} \frac{\mathrm{~m}^{2}}{\mathrm{sec}^{2}}
$$

(2) Find the indefinite integrals
(a) For $n \neq-1, \int x^{n} \mathrm{~d} x=$

Solution: We know $\frac{\mathrm{d}}{\mathrm{d} x} x^{n+1}=(n+1) x^{n}$ so $\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+C$.
(b) $\int\left(\frac{1}{2} x^{3 / 2}-e^{-x / 3}+7\right) \mathrm{d} x=$

Solution: We break the sum and then consider each piece separately. We note that $\left(x^{5 / 2}\right)^{\prime}=$ $\frac{5}{2} x^{3 / 2},\left(e^{-x / 3}\right)^{\prime}=-\frac{1}{3} e^{-x / 3}$ and get:

$$
\begin{aligned}
\int\left(\frac{1}{2} x^{3 / 2}-e^{-x / 3}+7\right) \mathrm{d} x & =\frac{1}{2} \int x^{3 / 2} \mathrm{~d} x-\int e^{-x / 3} \mathrm{~d} x+\int 7 \mathrm{~d} x \\
& =\frac{1}{2} \cdot \frac{2}{5} x^{5 / 2}+3 e^{-x / 3}+7 x+C
\end{aligned}
$$

Date: $13 / 1 / 2016$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(c) $\int_{4}^{9}\left(x^{5 / 2}+e^{2 x}\right) \mathrm{d} x=$

Solution: $\int\left(x^{5 / 2}+e^{2 x}\right)=\frac{2}{7} x^{7 / 2}+\frac{1}{2} e^{2 x}+C$ so

$$
\begin{aligned}
\int_{4}^{9}\left(x^{5 / 2}+e^{2 x}\right) \mathrm{d} x & =\left[\frac{2}{7} x^{7 / 2}+\frac{1}{2} e^{2 x}\right]_{x=4}^{x=9} \\
& =\frac{2}{7} \cdot 3^{7}+\frac{1}{2} e^{18}-\frac{2}{7} 2^{7}-\frac{1}{2} e^{8} \\
& =\frac{2 \cdot 3^{7}-2^{8}}{7}+\frac{e^{18}-e^{8}}{2} .
\end{aligned}
$$

(d) $\int x\left(e^{x^{2}}+1\right) \mathrm{d} x=$

Solution: $\int x\left(e^{x^{2}}+1\right) \mathrm{d} x=\int x e^{x^{2}} \mathrm{~d} x+\int x \mathrm{~d} x$. For the first part we note that $\left(e^{x^{2}}\right)^{\prime}=2 x e^{x}$ to get

$$
\int x\left(e^{x^{2}}+1\right) \mathrm{d} x=\frac{e^{x^{2}}+x^{2}}{2}+C .
$$

