Math 101 - WORKSHEET Special AVERAGE VALUE

1. Average Value

In this note I collect a few examples of computing the average value of a function, and some example problems using it.

Definition. Let f be defined and integrable on $[a, b]$. The average value of f on the interval is

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \text {. }
$$

Remark 1. A Riemann sum for $\int_{a}^{b} f \mathrm{~d} x$ is $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{b-a}{n}$; dividing by $b-a$ we see that a Riemann sum of the integral above is:

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) .
$$

In other words, the average value of f on the interval is the limit of averages of values of f at sample points.
In straightforward problems you are given f, a, b and asked to compute the average. In more complicated problems a, b or f itself may depend on a parameter, and you need to have the confidence to compute the average in terms of the parameter, geting a formula instead of a numerical answer for the average value. You can then solve for the parameter using given information.

2. Straight-up problems

In these problems, simply compute the average value of the given function on the given interval.
(1) $f(x)=e^{5 x}+x \sqrt{x^{2}+1}$ on the interval $[-1,2]$.
(2) (Final, 2009) $f(\theta)=|\sin \theta-\cos \theta|$ on $\left[0, \frac{\pi}{2}\right]$.
(3) (Final, 2011) $f(x)=x e^{x}$ on $[0,2]$.

3. Problems involving a parameter

In the following problems, one piece of information (the function f or the interval) depends on a parameter. You need to compute the average value using the parameter, and then solve for the parameter.
(1) (Final, 2012) Let k be a positive constant. Find the average value of $f(x)=\sin (k x)$ on $[0, \pi / k]$.
(2) Let $f(x)=x \sqrt{x^{2}+r^{2}}$. For what value of $r>0$ is the average value of f on $[0,3]$ equal to $\frac{1}{9}$?
(3) (Final, 2010) Find a number $b>0$ such that the function $f(x)=x-1$ has average value 0 on the interval $[0, b]$.

