Math 101 - SOLUTIONS TO WORKSHEET Special AVERAGE VALUE

1. Average Value

In this note I collect a few examples of computing the average value of a function, and some example problems using it.

Definition. Let f be defined and integrable on $[a, b]$. The average value of f on the interval is

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \text {. }
$$

Remark 1. A Riemann sum for $\int_{a}^{b} f \mathrm{~d} x$ is $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{b-a}{n}$; dividing by $b-a$ we see that a Riemann sum of the integral above is:

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) .
$$

In other words, the average value of f on the interval is the limit of averages of values of f at sample points.
In straightforward problems you are given f, a, b and asked to compute the average. In more complicated problems a, b or f itself may depend on a parameter, and you need to have the confidence to compute the average in terms of the parameter, geting a formula instead of a numerical answer for the average value. You can then solve for the parameter using given information.

2. Straight-up problems

In these problems, simply compute the average value of the given function on the given interval.
(1) $f(x)=e^{5 x}+x \sqrt{x^{2}+1}$ on the interval $[-1,2]$.

Solution: We plug in to the formula:

$$
\bar{f}=\frac{1}{3} \int_{x=-1}^{x=2}\left(e^{5 x}+x \sqrt{x^{2}+1}\right) \mathrm{d} x=\frac{1}{3} \int_{x=-1}^{x=2} e^{5 x} \mathrm{~d} x+\frac{1}{3} \int_{x=-1}^{x=2} x \sqrt{x^{2}+1} \mathrm{~d} x
$$

For the first integral, $\frac{1}{5} e^{5 x}$ is an obvious anti-derivative of $e^{5 x}$. In the second one we use substitution, noting that for $u=x^{2}+1$ we have $\mathrm{d} u=2 x \mathrm{~d} x$ so $x \mathrm{~d} x=\frac{1}{2} \mathrm{~d} u$ and:

$$
\begin{aligned}
\bar{f} & =\frac{1}{3}\left[\frac{1}{5} e^{5 x}\right]_{x=-1}^{x=2}+\frac{1}{3} \cdot \frac{1}{2} \int_{u=2}^{u=5} \sqrt{u} \mathrm{~d} u \\
& =\frac{1}{15}\left[e^{10}-e^{-5}\right]+\frac{1}{6}\left[\frac{2}{3} u^{3 / 2}\right]_{u=2}^{u=5} \\
& =\frac{1}{15}\left(e^{10}-e^{-5}\right)+\frac{1}{9}\left(5^{3 / 2}-2^{3 / 2}\right)
\end{aligned}
$$

(2) (Final, 2009) $f(\theta)=|\sin \theta-\cos \theta|$ on $\left[0, \frac{\pi}{2}\right]$.

Solution: On $\left[0, \frac{\pi}{4}\right]$ we have $\cos \theta \geq \sin \theta$, while the reverse is true on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. We therefore have

$$
\begin{aligned}
\bar{f} & =\frac{1}{\pi / 2} \int_{0}^{\pi / 2} f(\theta) \mathrm{d} \theta=\frac{2}{\pi}\left(\int_{0}^{\pi / 4}(\cos \theta-\sin \theta) \mathrm{d} \theta+\int_{0}^{\pi / 4}(\sin \theta-\sin \theta) \mathrm{d} \theta\right) \\
& =\frac{2}{\pi}\left([\sin \theta+\cos \theta]_{\theta=0}^{\theta=\pi / 4}+[-\cos \theta-\sin \theta]_{\theta=\pi / 4}^{\theta=\pi / 2}\right) \\
& =\frac{2}{\pi}\left(\left[\frac{2}{\sqrt{2}}-1\right]+\left[-1+\frac{2}{\sqrt{2}}\right]\right)=\frac{2}{\pi}(2 \sqrt{2}-2)=\frac{4(\sqrt{2}-1)}{\pi} .
\end{aligned}
$$

Solution: Our function is symmetric on relfection by $\frac{\pi}{4}$ since $f\left(\frac{\pi}{2}-\theta\right)=\left|\sin \left(\frac{\pi}{2}-\theta\right)-\cos \left(\frac{\pi}{2}-\theta\right)\right|=$ $|\cos \theta-\sin \theta|=f(\theta)$. In particular, the average on $\left[0, \frac{\pi}{4}\right]$ and on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ are equal. It's therefore enough to compute the average on half the interval, which is

$$
\begin{aligned}
\frac{1}{\pi / 4} \int_{0}^{\pi / 4}(\cos \theta-\sin \theta) \mathrm{d} \theta & =\frac{4}{\pi}[\sin \theta+\cos \theta]_{\theta=0}^{\theta=\pi / 4} \\
& =\frac{4}{\pi}\left[\frac{2}{\sqrt{2}}-1\right]=\frac{4(\sqrt{2}-1)}{\pi}
\end{aligned}
$$

(3) (Final, 2011) $f(x)=x e^{x}$ on $[0,2]$.

Solution: We plug in to the formula and the integrate by parts, using $u=x, \mathrm{~d} v=e^{x} \mathrm{~d} x$ so that $v=e^{x}, \mathrm{~d} u=\mathrm{d} x$.

$$
\begin{aligned}
\bar{f} & =\frac{1}{2} \int_{0}^{2} x e^{x} \mathrm{~d} x=\frac{1}{2}\left[x e^{x}\right]_{x=0}^{x=2}-\frac{1}{2} \int_{0}^{2} e^{x} \mathrm{~d} x \\
& =\frac{1}{2} 2 e^{2}-\frac{1}{2}\left[e^{2}-1\right]=\frac{e^{2}+1}{2}
\end{aligned}
$$

3. Problems involving a parameter

In the following problems, one piece of information (the function f or the interval) depends on a parameter. You need to compute the average value using the parameter, and then solve for the parameter.
(1) (Final, 2012) Let k be a positive constant. Find the average value of $f(x)=\sin (k x)$ on $[0, \pi / k]$.

Solution: The average value is

$$
\begin{aligned}
\bar{f} & =\frac{1}{\pi / k} \int_{x=0}^{x=\pi / k} \sin (k x) \mathrm{d} x \\
& =\frac{1}{\pi} \int_{x=0}^{x=\pi / k} \sin (k x) k \mathrm{~d} x \\
& =\frac{1}{=} \int_{u=0}^{u=\pi} \sin (u) \mathrm{d} u=\frac{1}{\pi}[-\cos u]_{u=0}^{u=\pi} \\
& =\frac{1}{\pi}[-(-1)-(-(1))]=\frac{2}{\pi}
\end{aligned}
$$

(2) Let $f(x)=x \sqrt{x^{2}+r^{2}}$. For what value of $r>0$ is the average value of f on [0,3] equal to $\frac{1}{9}$?

Solution: Substituting $u=x^{2}+r^{2}, \mathrm{~d} u=2 x \mathrm{~d} x$, the average value is

$$
\begin{aligned}
\bar{f} & =\frac{1}{3} \int_{x=0}^{x=3} x \sqrt{x^{2}+r^{2}} \mathrm{~d} x \\
& =\frac{1}{3} \cdot \frac{1}{2} \int_{x=0}^{x=3} \sqrt{u} \mathrm{~d} u=\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{x=0}^{x=2} \\
& =\frac{1}{9}\left[\sqrt{9+r^{2}}-\sqrt{r^{2}}\right]
\end{aligned}
$$

We are given the averaeg value is $\frac{1}{9}$, so we have

$$
\frac{1}{9}\left(\sqrt{9+r^{2}}-r\right)=\frac{1}{9}
$$

hence

$$
\begin{aligned}
\sqrt{9+r^{2}} & =r+1 \\
9+r^{2} & =(r+1)^{2}=r^{2}+2 r+1 \\
9 & =2 r+1 \\
4 & =r .
\end{aligned}
$$

(3) (Final, 2010) Find a number $b>0$ such that the function $f(x)=x-1$ has average value 0 on the interval $[0, b]$.

Solution: The average value on the interval is $\frac{1}{b} \int_{0}^{b} f(x) \mathrm{d} x$. We don't know the value of b yet, but that shouldn't stop us from evaluating this expression. We get:

$$
\begin{aligned}
\frac{1}{b} \int_{0}^{b} f(x) \mathrm{d} x & =\frac{1}{b} \int_{0}^{b}(x-1) \mathrm{d} x=\frac{1}{b}\left[\frac{x^{2}}{2}-x\right]_{x=0}^{x=b} \\
& =\frac{1}{b}\left[\frac{1}{2} b^{2}-b\right]=\frac{1}{2} b-1
\end{aligned}
$$

We see that the average value is zero when $\frac{1}{2} b-1=0$, that is when $b=2$.

