MATH 100 - NOTES 19 THE SHAPE OF THE GRAPH

1. Tools

Let f be differentiable as needed on (a, b).
Fact (First derivative). (1) If $f^{\prime}(x)>0$ for all $x \in(a, b)$ then f is strictly increasing there.
(2) If $f^{\prime}(x)<0$ for all $x \in(a, b)$ then f is strictly decreasing there.

Every change involves either a critical point (f^{\prime} vanishes) or a singularity (f^{\prime} undefined).
Fact (Second derivative). (1) If $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$ then f is concave up there.
(2) If $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$ then f is concave down there.

Definition 1. A change in concavity is called an inflection point.
Theorem. (Tests for minima and maxima) Let $x_{0} \in(a, b)$ be a critical or singular number for f, and suppose f is continuous at x_{0}, differentiable near it.
(1) Either of the following is sufficient to show that f has a local minimum at x_{0} :
(a) $f^{\prime \prime}\left(x_{0}\right)>0$ or;
(b) $f^{\prime}(x)$ is negative to the left of x_{0}, positive to its right.
(2) Either of the following shows that f has a local maximum at x_{0} :
(a) $f^{\prime \prime}\left(x_{0}\right)<0$ or;
(b) $f^{\prime}(x)$ is positive to the left of x_{0}, negative to its right.

Curve sketching protocol. Given a function f.
0th derivative stuff:
(a) The domain and the domain of continuity.
(b) Domains where $f>0, f<0$.
(c) Anchor points: x - and y-intercepts.
(d) Horizontal and vertical asymptotes.

1st derivative stuff: using $f^{\prime}(x)$ determine
(a) Domains where $f^{\prime}>0, f^{\prime}<0$
(b) Critical and singular numbers.

2nd derivative stuff:
(a) Domains where $f^{\prime \prime}>0, f^{\prime \prime}<0$
(b) Points where $f^{\prime \prime}(x)=0$, inflection points.

2. Examples

2.1. $f(x)=\frac{x^{2}-9}{x^{2}+3}$.

- $f^{\prime}(x) \stackrel{\text { quot }}{=} \frac{2 x\left(x^{2}+3\right)-2 x\left(x^{2}-9\right)}{\left(x^{2}+3\right)^{2}}=\frac{24 x}{\left(x^{2}+3\right)^{2}}$.
- $f^{\prime \prime}(x)=24 \frac{1}{\left(x^{2}+3\right)^{2}}-24 \frac{x \cdot 2 \cdot 2 x}{\left(x^{2}+3\right)^{3}}=24 \frac{\left(x^{3}+3\right)-4 x^{2}}{\left(x^{2}+3\right)^{3}}=72 \frac{1-x^{2}}{\left(x^{2}+3\right)^{3}}$.

Thus
(1) f defined on \mathbb{R}, cts everywhere (defined by formula; denominator everywhere nonzero). Moreover (a) $f(0)=-3, f(x)=\frac{(x-3)(x+3)}{x^{2}+3}$ so vanishes at $x= \pm 3$, negative between them, positive otherwise.
(b) $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{1-9 / x^{2}}{1+3 / x^{2}}=1$.
(2) $f^{\prime}(x)$ is negative for $x<0$, zero at $x=0$, positive at $x>0$ (hence at the critical number $x=0$ we have a local minimum)
(3) $f^{\prime \prime}(x)$ has the same sign as $(1-x)^{2}=(1-x)(1+x)$ so it is negative if $x<-1$ or $x>1$, positive if $-1<x<+1$ and zero at $x= \pm 1$ which are therefore inflection points.
The "special" points were: $-3,-1,0,1,3$ so we break up the domain of f at those points:

x	$(-\infty,-3)$	-3	$(-3,-1)$	-1	$(-1,0)$	0	$(0,1)$	1	$(1,3)$	3	$(3, \infty)$
f	+	0	-	-2	-	-9	-	-2	-	0	+
f^{\prime}	+	+	+	+	+	0	+	+	+	+	+
$f^{\prime \prime}$	-	-	-	0	-	-	-	0	-	-	-

[Plot to be added]
2.2. $f(x)=x^{2 / 3}(x-1)$.

- $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}(x-1)+x^{2 / 3}=\frac{2(x-1)+3 x}{3 x^{1 / 3}}=\frac{5 x-2}{3 x^{1 / 3}}$
- $f^{\prime \prime}(x)=\frac{5}{3 x^{1 / 3}}-\frac{5 x-2}{9 x^{4 / 3}}=\frac{15 x-(5 x-2)}{9 x^{4 / 3}}=\frac{10 x+2}{9 x^{4 / 3}}$

Thus (note: $x^{2 / 3}$ and $x^{4 / 3}$ are always non-negative; $x^{1 / 3}$ has the same sign as x)
(1) f defined on $\mathbb{R}\left(x^{1 / 3}\right.$ defined everywhere), continuous there (defined by formula).
(a) $f(0)=0, f(1)=0$ and f is positive if $x<1$ negative if $x>1\left(x^{2 / 3} \geq 0\right.$ for all $\left.x\right)$
(b) $\lim _{x \rightarrow \pm \infty}|f(x)|=\infty$ so no horizontal asymptotes.
(2) The critical numbers are $0\left(f^{\prime}\right.$ undefined) and $\frac{2}{5}\left(f^{\prime}=0\right)$. Otherwise $f^{\prime}>0$ if $x<0, f^{\prime}<0$ if $0<x<\frac{2}{5}$ and $f^{\prime}>0$ if $x>\frac{2}{3}$.
(3). Thus $f^{\prime \prime}$ is undefined at 0 , vanishes at $-\frac{1}{5}$, and is negztive if $x<-\frac{1}{5}$, positive if $-\frac{1}{5}<x<0$ or $x>0$, so only $-\frac{1}{5}$ is an inflection point.
Summary table:

x	$\left(-\infty,-\frac{1}{5}\right)$	$-\frac{1}{5}$	$\left(-\frac{1}{5}, 0\right)$	0	$\left(0, \frac{2}{5}\right)$	$\frac{2}{5}$	$\left(\frac{2}{5}, 1\right)$	1	$(1, \infty)$
f	-	$-\frac{4}{55 / 3}$	-	0	-	$-\frac{3 \cdot 4^{1 / 3}}{55.3}$	-	0	+
f^{\prime}	+	+	+	undef	-	0	+	+	+
$f^{\prime \prime}$	-	0	+	undef	+	+	+	+	+

[Plot to be added]
2.3. ??

