MATH 100 – NOTES 19 THE SHAPE OF THE GRAPH

1. Tools

Let f be differentiable as needed on (a, b).

Fact (First derivative). (1) If f'(x) > 0 for all $x \in (a, b)$ then f is strictly increasing there. (2) If f'(x) < 0 for all $x \in (a, b)$ then f is strictly decreasing there.

Every change involves either a critical point (f' vanishes) or a singularity (f' undefined).

Fact (Second derivative). (1) If f''(x) > 0 for all $x \in (a, b)$ then f is <u>concave</u> up there. (2) If f''(x) < 0 for all $x \in (a, b)$ then f is <u>concave</u> down there.

Definition 1. A change in concavity is called an *inflection point*.

Theorem. (Tests for minima and maxima) Let $x_0 \in (a,b)$ be a critical or singular number for f, and suppose f is continuous at x_0 , differentiable near it.

(1) Either of the following is sufficient to show that f has a local minimum at x_0 :

(a) $f''(x_0) > 0$ <u>or;</u>

- (b) f'(x) is negative to the left of x_0 , positive to its right.
- (2) Either of the following shows that f has a local maximum at x_0 :

(a) $f''(x_0) < 0 \text{ <u>or;</u>}$

(b) f'(x) is positive to the left of x_0 , negative to its right.

Curve sketching protocol. Given a function f.

- 0th derivative stuff:
 - (a) The domain and the domain of continuity.
 - (b) Domains where f > 0, f < 0.
 - (c) Anchor points: x- and y-intercepts.
 - (d) Horizontal and vertical asymptotes.
- 1st derivative stuff: using f'(x) determine
 - (a) Domains where f' > 0, f' < 0
 - (b) Critical and singular numbers.

2nd derivative stuff:

- (a) Domains where f'' > 0, f'' < 0
- (b) Points where f''(x) = 0, inflection points.

Date: 12/11/2015.

2. Examples

2.1.
$$f(x) = \frac{x^2 - 9}{x^2 + 3}$$
.
• $f'(x) \stackrel{\text{quot}}{=} \frac{2x(x^2 + 3) - 2x(x^2 - 9)}{(x^2 + 3)^2} = \frac{24x}{(x^2 + 3)^2}$.
• $f''(x) = 24\frac{1}{(x^2 + 3)^2} - 24\frac{x \cdot 2 \cdot 2x}{(x^2 + 3)^3} = 24\frac{(x^3 + 3) - 4x^2}{(x^2 + 3)^3} = 72\frac{1 - x^2}{(x^2 + 3)^3}$.

Thus

- (1) f defined on \mathbb{R} , cts everywhere (defined by formula; denominator everywhere nonzero). Moreover
 - (a) f(0) = -3, $f(x) = \frac{(x-3)(x+3)}{x^2+3}$ so vanishes at $x = \pm 3$, negative between them, positive otherwise. (b) $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{1-9/x^2}{1+3/x^2} = 1$.
- (2) f'(x) is negative for x < 0, zero at x = 0, positive at x > 0 (hence at the critical number x = 0 we have a local minimum)
- (3) f''(x) has the same sign as $(1-x)^2 = (1-x)(1+x)$ so it is negative if x < -1 or x > 1, positive if -1 < x < +1 and zero at $x = \pm 1$ which are therefore inflection points.

	Person Person		, -, -, -,	-,		•- P			- J		- r	
x	$\left\ \left(-\infty, -3 \right) \right.$	-3	(-3, -1)	-1	(-1,0)	0	(0,1)	1	(1,3)	3	$(3,\infty)$	
$\int f$	+	0	-	-2	-	-9	-	-2	-	0	+	
f'	+	+	+	+	+	0	+	+	+	+	+	
f''	-	-	-	0	-	-	-	0	-	-	-	
[Plo	Plot to be added											

The "special" points were: -3, -1, 0, 1, 3 so we break up the domain of f at those points:

2.2. $f(x) = x^{2/3}(x-1)$.

• $f'(x) = \frac{5}{3}x^{-1/3}(x-1) + x^{2/3} = \frac{2(x-1)+3x}{3x^{1/3}} = \frac{5x-2}{3x^{1/3}}$ • $f''(x) = \frac{5}{3x^{1/3}} - \frac{5x-2}{9x^{4/3}} = \frac{15x-(5x-2)}{9x^{4/3}} = \frac{10x+2}{9x^{4/3}}$ Thus (note: $x^{2/3}$ and $x^{4/3}$ are always non-negative; $x^{1/3}$ has the same sign as x)

- (1) f defined on \mathbb{R} ($x^{1/3}$ defined everywhere), continuous there (defined by formula).
 - (a) f(0) = 0, f(1) = 0 and f is positive if x < 1 negative if x > 1 ($x^{2/3} \ge 0$ for all x)
 - (b) $\lim_{x\to\pm\infty} |f(x)| = \infty$ so no horizontal asymptotes.
- (2) The critical numbers are 0 (f' undefined) and $\frac{2}{5}$ (f' = 0). Otherwise f' > 0 if x < 0, f' < 0 if
- $0 < x < \frac{2}{5}$ and f' > 0 if $x > \frac{2}{3}$. (3) Thus f'' is undefined at 0, vanishes at $-\frac{1}{5}$, and is negative if $x < -\frac{1}{5}$, positive if $-\frac{1}{5} < x < 0$ or x > 0, so only $-\frac{1}{5}$ is an inflection point.

Summary table:

x	$\left(-\infty,-\frac{1}{5}\right)$	$-\frac{1}{5}$	$(-\frac{1}{5},0)$	0	$(0,\frac{2}{5})$	$\frac{2}{5}$	$(\frac{2}{5},1)$	1	$(1,\infty)$	
f	-	$-\frac{4}{5^{5/3}}$	-	0	-	$-\frac{3\cdot 4^{1/3}}{5^{5\cdot 3}}$	-	0	+	
f'	+	+	+	undef	-	0	+	+	+	
f''	-	0	+	undef	+	+	+	+	+	
[Plot to be added]										

2.3. ??