MATH 100 - SOLUTIONS TO WORKSHEET 22 L'HÔPITAL'S RULE

1. Statement

(1) Evaluate $\lim _{x \rightarrow 1} \frac{\log x}{x-1}$.

Solution 1: By the definition of the derivative this is $\lim _{x \rightarrow 1} \frac{\log x-\log 1}{x-1}=\frac{\mathrm{d} \log x}{\mathrm{~d} x} \upharpoonright_{x=1}=\frac{1}{x} \upharpoonright_{x=1}=$ $\frac{1}{1}=1$.

Solution 2: since $\lim _{x \rightarrow 1} \log x=\log 1=0$ and $\lim _{x \rightarrow 1}(x-1)=1-1=0$ this is indeterminate $\frac{0}{0}$; by l'Hôpital's rule,

$$
\lim _{x \rightarrow 1} \frac{\log x}{x-1}=\lim _{x \rightarrow 1} \frac{1 / x}{1}=\frac{1 / 1}{1}=1
$$

(2) Evaluate $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$.

Solution: We apply l'Hôpital twice getting:

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{2}=-\frac{\cos 0}{2}=-\frac{1}{2}
$$

Justification: in the first limit we have since $\lim _{x \rightarrow 0}(\cos x-1)=\cos 0-1=0$ and $\lim _{x \rightarrow 0} x^{2}=0$ so indereminate $\frac{0}{0}$. In the second limit we had $\lim _{x \rightarrow 0} \sin x=0$ and $\lim _{x \rightarrow 0}(2 x)=0$ so again indeterminate $\frac{0}{0}$.
(3) Do (2) using a 2nd-order Taylor expansion.

Solution 2: Since the MacLaurin expansion of the cosine function is $\cos x=1-\frac{1}{2} x^{2}+O\left(x^{4}\right)(O$ is the first letter of the word Order, and this says "next term of order at least $x^{4 "}$ ")

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}+O\left(x^{4}\right)}{x^{2}}=\lim _{x \rightarrow 0}\left(-\frac{1}{2}+O\left(x^{2}\right)\right)=-\frac{1}{2}
$$

(4) Given that $f(2)=5, g(2)=3, f^{\prime}(2)=7$ and $g^{\prime}(2)=4$ find $\lim _{x \rightarrow 3} \frac{f(2 x-4)-g(x-1)-2}{g\left(x^{2}-7\right)-3}$.

Solution: Since f, g are differentiable at 2 they are continuous there. We have $\lim _{x \rightarrow 3}(f(2 x-4)-g(x-1)-2)=$ $f(2)-g(2)-2=5-3-2=0$ and $\lim _{x \rightarrow 3}\left(g\left(x^{2}-7\right)-3\right)=g(2)-3=0$ so this is indeterminate $\frac{0}{0}$. By l'Hôpital and the chain rule we have

$$
\lim _{x \rightarrow 3} \frac{f(2 x-4)-g(x-1)-2}{g\left(x^{2}-7\right)-3}=\lim _{x \rightarrow 3} \frac{2 f^{\prime}(2 x-4)-g^{\prime}(x-1)}{2 x \cdot g^{\prime}\left(x^{2}-7\right)}=\frac{2 f^{\prime}(2)-g^{\prime}(2)}{2 \cdot 3 \cdot g^{\prime}(2)}=\frac{2 \cdot 7-4}{6 \cdot 4}=\frac{10}{24}=\frac{5}{12}
$$

(5) Evaluate $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}$.

Solution: As $x \rightarrow 0$ we have $e^{x} \rightarrow 1>0$ while $\frac{1}{x} \rightarrow+\infty$ (we have positive x here) so $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}=+\infty$.

Pitfall: Naively applying l'Hôpital seems to give $\lim _{x \rightarrow 0} \frac{e^{x}}{x}=\lim _{x \rightarrow 0} \frac{e^{x}}{1}=1$ which is wrong because this is not an indeterminate form: the denominator approaches 0 but the numerators approaches 1.
(6) Evaluate $\lim _{x \rightarrow \infty} x^{2} e^{-x}$

Solution: Applying l'Hôpital twice we get

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
$$

where in each stage this was justified since both e^{x} and any positive power of x tend to ∞ as $x \rightarrow \infty$.
(7) Evaluate $\lim _{x \rightarrow 0^{+}} x \log x$.

Solution: Write this as $\lim _{x \rightarrow 0^{+}} \frac{\log x}{1 / x}$ this is indeterminate of the form $\frac{\infty}{\infty}$ (note that $\lim _{x \rightarrow 0^{+}} \log x=$ $-\infty)$. Applying l'Hôpital we get

$$
\lim _{x \rightarrow 0^{+}} \frac{\log x}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}(-x)=0 .
$$

Remark: we chose to write $\frac{\log x}{1 / x}$ and not $\frac{x}{1 / \log x}$ since differentiation would simplify the \log (make it a power).
(8) Evaluate $\lim _{x \rightarrow \infty} x^{n} e^{-x}$.

Solution: Applying l'Hôpital n times we get

$$
\lim _{x \rightarrow \infty} x^{n} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{n x^{n-1}}{e^{x}}=n(n-1) \lim _{x \rightarrow \infty} \frac{x^{n-2}}{e^{x}}=\cdots=n!\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
$$

(9) Suppose $a>0$. Evaluate $\lim _{x \rightarrow \infty} x^{-a} \log x$.

Solution: We apply l'Hôpital to the $\frac{\infty}{\infty}$ indereminate form $\frac{\log x}{x^{a}}$

$$
\lim _{x \rightarrow \infty} x^{-a} \log x=\lim _{x \rightarrow \infty} \frac{\log x}{x^{a}}=\lim _{x \rightarrow \infty} \frac{1 / x}{a x^{a-1}}=\lim _{x \rightarrow \infty} \frac{1}{a x^{a}}=0
$$

since $a>0$.
(10) Evaluate $\lim _{x \rightarrow 0}(2 x+1)^{1 / \sin x}$.

Solution: This is indeterminate 1^{∞}. Taking logarithms we first compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} \log \left((2 x+1)^{1 / \sin x}\right) & =\lim _{x \rightarrow 0} \frac{1}{\sin x} \log (2 x+1)=\lim _{x \rightarrow 0} \frac{\log (2 x+1)}{\sin x} \\
\text { l'Hôpital } & =\lim _{x \rightarrow 0} \frac{2 /(2 x+1)}{\cos x}=\frac{2 / 1}{1}=2,
\end{aligned}
$$

where the use of l'Hôpital was justified since $\lim _{x \rightarrow 0} \log (2 x+1)=\log 1=0$ and $\lim _{x \rightarrow 0} \sin x=$ $\sin 0=0$. Finally we use the continuity of the exponential function:

$$
\begin{aligned}
\lim _{x \rightarrow 0}(2 x+1)^{1 / \sin x} & =\lim _{x \rightarrow 0} \exp \left\{\log \left((2 x+1)^{1 / \sin x}\right)\right\} \\
& =\exp \left\{\lim _{x \rightarrow 0} \log \left((2 x+1)^{1 / \sin x}\right)\right\} \\
& =\exp (2)=e^{x} .
\end{aligned}
$$

