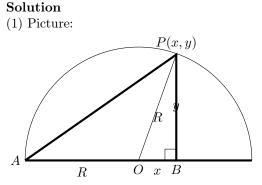
MATH 100 – WORKSHEET 21 OPTIMIZATION

Problem-solving steps: (0) <u>read carefully</u> (1) Draw picture, fix coordinate system; (2) parametrize; (3) Enforce relations; (4) Calculus; (5) Endgame.

(1) (Final 2012) The right-angled triangle $\triangle ABP$ (AP is the hypotenuse) has the vertex A = (-1, 0), the vertex P lie on the semicircle $y = \sqrt{1 - x^2}$ and the vertex B on the x-axis. What is the largest possible area of this triangle?



(2) Put the coordinate system where the centre of the circle is at (0,0) and the diameter is on the x-axis. Let B be at (x,0), P at (x,y).

(3) Then (P on the circle) $y = \sqrt{1-x^2}$ and the area of the circle is $A = \frac{1}{2}(\text{base}) \times (\text{height}) = \frac{1}{2}(1+x)\sqrt{1-x^2}$ since the base of the triangle has length 1+x.

(4) The function A(x) is continuous on [-1, 1] so we can find its minimum by differentiation. By the product rule and chain rule,

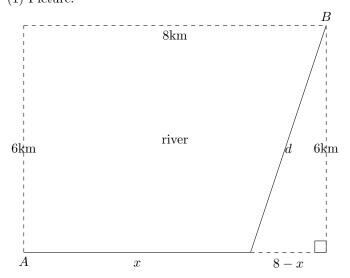
$$\begin{aligned} A'(x) &= \frac{1}{2}\sqrt{1-x^2} + \frac{1}{2}(1+x)\frac{-2x}{2\sqrt{1-x^2}} \\ &= \frac{\left(\sqrt{1-x^2}\right)^2}{2\sqrt{1-x^2}} - \frac{x(1+x)}{2\sqrt{1-x^2}} = \frac{1-x^2-x-x^2}{2\sqrt{1-x^2}} \\ &= \frac{1-x-2x^2}{2\sqrt{1-x^2}} \,. \end{aligned}$$

This is defined on (-1, 1) and at critical points we have $2x^2 + x - 1 = 0$, that is there $x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = -1, \frac{1}{2}$. We therefore have singularities at the endpoints ± 1 and a critical point at $x = \frac{1}{2}$. The area vanishes at the endpoints (the triangle becomes degenerate) and

$$A\left(\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{3}{2} \cdot \sqrt{1 - \frac{1}{2^2}} = \frac{3\sqrt{3}}{8}.$$

It follows that the largest possible area is $\frac{3\sqrt{3}}{8}$.

(2) (Final 2010) A river running east-west is 6km wide. City A is located on the shore of the river; city B is located 8km to the east on the opposite bank. It costs \$40/km to build a bridge across the river, \$20/km to build a road along it. What is the cheapest way to construct a path between the cities?



(2) Build a road of length x from A along the bank, then build a bridge of length d toward B.

(3) By Pythagoras, $d = \sqrt{6^2 + (8 - x)^2}$ so the total cost is

$$C(x) = 20x + 40\sqrt{6^2 + (8-x)^2} = 20x + 40\sqrt{6^2 + (x-8)^2}.$$

(4) The function A(x) is defined everywhere $(6^2 + (8 - x)^2 \ge 6^2 > 0)$ and continuous there. We have

$$A'(x) = 20 + 40 \frac{2(x-8)}{2\sqrt{6^2 + (x-8)^2}}$$

This exists everywhere (the denominator is everywhere positive by the same calculation). It's enough to consider $0 \le x \le 8$ (no point in starting the bridge west of A or east of B). Looking for critical points there we solve A'(x) = 0 that is:

$$20 + 40 \frac{x - 8}{\sqrt{36 + (x - 8)^2}} = 0$$

$$20 = 40 \frac{8 - x}{\sqrt{36 + (8 - x)^2}}$$

$$\sqrt{36 + (8 - x)^2} = 2(8 - x)$$

$$36 + (8 - x)^2 = 4(8 - x)^2$$

$$36 = 3(8 - x)^2$$

$$(8 - x) = \sqrt{\frac{36}{3}} = \sqrt{12} = 2\sqrt{3}$$

(only the positive root since $0 \le x \le 8$ forces $8 - x \ge 0$) so

 $x=8-2\sqrt{3}\,.$ We then have $A(0)=40\sqrt{6^2+8^2}=40\sqrt{100}=400,\,A(8)=20\cdot8+40\sqrt{6^2}=160+240=400$ and

$$\begin{aligned} A(8-2\sqrt{3}) &= 20\left(8-2\sqrt{3}\right) + 40\sqrt{6^2 + (2\sqrt{3})^2} = 160 - 40\sqrt{3} + 40\sqrt{36+12} \\ &= 160 - 40\sqrt{3} + 40\sqrt{48} = 160 - 40\sqrt{3} + 40\sqrt{16 \cdot 3} \\ &= 160 - 40\sqrt{3} + 40 \cdot 4\sqrt{3} = 160 + 120\sqrt{3} \,. \end{aligned}$$

Now $\sqrt{3} < \sqrt{4} = 2$ so $A(8 - 2\sqrt{3}) = 160 + 120\sqrt{3} < 160 + 120 \cdot 2 = 400 = A(0) = A(8)$ and we conclude that $A(8 - 2\sqrt{3})$ is the minimum. (5) The cheapest way to construct a bridge is construct a road of length $(8 - 2\sqrt{3})$ km along the bank from A toward B, and then bridge from the end of the road to B.