MATH 100 – WORKSHEET 17 THE MVT

1. More minima and maxima

- (1) Show that the function $f(x) = 3x^3 + 2x 1 + \sin x$ has no local maxima or minima. You may use that $f'(x) = 9x^2 + 2 + \cos x$.
- (2) Let $g(x) = xe^{-x^2/8}$ so that $g'(x) = \left(1 \frac{x^2}{4}\right)e^{-x^2/8}$, find the global minimum and maximum of g on (a) [-1,4] (b) $[0,\infty)$
- (3) Find the critical numbers and singularities of $h(x) = \begin{cases} x^3 6x^2 + 3x & x \le 3\\ \sin(2\pi x) 18 & x \ge 3 \end{cases}$.

2. The Mean Value Theorem

Theorem. Let f be defined and differentiable on [a,b]. Then there is c between a, b such that $\frac{f(b)-f(a)}{b-a} = f'(c)$. Equivalently, for any x there is c between a, x so that f(x) = f(a) + f'(c)(x-a).

(1) Let $f(x) = e^x$ on the interval [0,1]. Find all values of c so that $f'(c) = \frac{f(1) - f(0)}{1 - 0}$.

(2) Let f(x) = |x| on the interval [-1, 2]. Find all values of c so that $f'(c) = \frac{f(2) - f(-1)}{2 - (-1)}$

 $Date:\,5/11/2015,$ Worksheet by Lior Silberman.

(4) Suppose f(1) = 3 and $-3 \le f'(x) \le 2$ for $x \in [1, 4]$. What can you say about f(4)?

(5) Show that $|\sin a - \sin b| \le |a - b|$ for all a, b.

(6) Let x > 0. Show that $e^x > 1 + x$ and that $\log(1 + x) \le x$.