MATH 100 - SOLUTIONS TO WORKSHEET 17 THE MVT

1. More minima and maxima

(1) Show that the function $f(x)=3 x^{3}+2 x-1+\sin x$ has no local maxima or minima. You may use that $f^{\prime}(x)=9 x^{2}+2+\cos x$.

Solution: $f(x)$ is differentiable everywhere, so by Fermat's Theorem at any local extremum x_{0} we'd have $f^{\prime}\left(x_{0}\right)=0$. However, at any x we have

$$
f^{\prime}(x)=9 x^{2}+2+\cos x \geq 0+2-1=1>0
$$

(2) Let $g(x)=x e^{-x^{2} / 8}$ so that $g^{\prime}(x)=\left(1-\frac{x^{2}}{4}\right) e^{-x^{2} / 8}$, find the global minimum and maximum of g on
(a) $[-1,4]$
(b) $[0, \infty)$

Solution: g is differentiable everywhere, so it's enough to consider its critical points and the endpoints of the intervals. Since $e^{a} \neq 0$ for all a, we have $g^{\prime}(x)=0$ iff $1-\frac{x^{2}}{4}=0$ i.e. iff $x= \pm 2$.
(a) On $[-1,4]$ the only critical point is $x=2$ and we have $f(-1)=-e^{-1 / 8}, f(2)=2 e^{-1 / 2}$ and $f(4)=4 e^{-2}$ so the absolute minimum is $-e^{-1 / 8}$ at $x=-1$. and the absolute maximum is $2 e^{-1 / 2}$ at $x=2$.
(b) On $[0, \infty)$ we have $f(x) \geq 0$ so the absolute minimum is $f(0)=0$ at $x=0$. Since $\lim _{x \rightarrow \infty} f(x)=$ $\lim _{x \rightarrow \infty} \frac{x}{e^{x^{2} / 9}}=0$, the maximum must occur at an interior point of $[0, \infty)$, in particular at a point where $f^{\prime}(x)=0$. From part (a) we therefore know that the maximum occurs at $x=2$ and is $2 e^{-1 / 2}$.
(3) Find the critical numbers and singularities of $h(x)=\left\{\begin{array}{ll}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{array}\right.$.

Solution: For $x \neq 3$ we have

$$
h^{\prime}(x)= \begin{cases}3 x^{2}-12 x+3 & x<3 \\ 2 \pi \cos (2 \pi x) & x>3\end{cases}
$$

In particular, the critical points where $x<3$ are where $3\left(x^{2}-4 x+1\right)=0$, that is where $x=\frac{4 \pm \sqrt{12}}{2}=$ $2 \pm \sqrt{3}-$ but (pitfall!) $2+\sqrt{3}>2+1=3$ so the only critical point to the left of 3 is $2-\sqrt{3}$. To the right of 3 we need to solve $\cos (2 \pi x)=0$ which occurs when $x=\frac{1}{4}+\frac{k}{2}, k \in \mathbb{Z}$ - but we need $x>3$ so the critical points to the right of 3 are $\left\{\left.\frac{1}{4}+\frac{k}{2} \right\rvert\, k \geq 6\right\}$. At $x=3 h$ is continuous

$$
\lim _{x \rightarrow 3^{-}} h(x)=h(3)=27-54+9=-18=\sin (6 \pi)-18=\lim _{x \rightarrow 3^{+}} h(x)
$$

but singular: by the definition of the derivative, on the left we have

$$
\lim _{x \rightarrow 3^{-}} \frac{h(x)-h(3)}{x-3}=\left(3 x^{2}-12 x+3\right) \upharpoonright_{x=3}=-6
$$

while

$$
\lim _{x \rightarrow 3^{+}} \frac{h(x)-h(3)}{x-3}=(\cos (2 \pi x)) \upharpoonright_{x=3}=\cos (6 \pi)=1
$$

2. The Mean Value Theorem

(1) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.

Solution: $f^{\prime}(x)=e^{x}$ so we need to solve

$$
e^{c}=\frac{e-1}{1}
$$

and get $c=\log (e-1)$.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$.

Solution: $f^{\prime}(x)=\left\{\begin{array}{ll}1 & x>0 \\ -1 & x<0\end{array}\right.$ while $\frac{f(2)-f(-1)}{2-(-1)}=\frac{2-1}{2+1}=\frac{1}{3}$ and there are no solutions (but f^{\prime} is not differentiable on all of $(-1,2)$, so MVT is not violated).
(3) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)

Solution: f is everywhere differentiable (defined by formula) and in particular everywhere continuous.

- At least one zero: We have $f(10)=3019+\sin 10>3000>0$ and $f(-10)=-3021-\sin (10)<$ $-3000<0$ so by the IVT f has a zero in $(-10,10)$.
- Not more than one: Suppose $a<b$ where both zeroes of f,so that $f(a)=f(b)=0$. Since f is everywhere differentiable there would be $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{0-0}{b-a}=0
$$

But $f^{\prime}(x)=9 x^{2}+2+\cos x \geq 2+\cos x \geq 2-1=1>0$ for all x, so f^{\prime} is nowhere vanishing. This contradicts the existence of c, hence of the distinct zeroes a, b.
(4) Suppose $f(1)=3$ and $-3 \leq f^{\prime}(x) \leq 2$ for $x \in[1,4]$. What can you say about $f(4)$?

Solution: Since f is differentiable on $[-1,4]$ it's continuous there and the MVT applies. There is therefore $c \in(1,4)$ such that

$$
f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}
$$

We were given that $-3 \leq f^{\prime}(c) \leq 2$ and $f(1)=3$ so

$$
-3 \leq \frac{f(4)-3}{3} \leq 2
$$

Multiplying by the positive number 3 we get

$$
-9 \leq f(4)-3 \leq 6
$$

Adding 3 we now get

$$
-6 \leq f(4) \leq 9
$$

(5) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.

Solution: When a, b are equal both sides are zero, so suppose $a \neq b$. Since $f(x)=\sin x$ is everywhere differentiable it's also everywhere continuous. We may thus apply the MVT: given $a \neq b$ there is c between a, b such that

$$
\frac{\sin a-\sin b}{a-b}=f^{\prime}(c)=\cos c .
$$

Taking absolute values we get

$$
\left|\frac{\sin a-\sin b}{a-b}\right|=|\cos c| \leq 1
$$

So

$$
\frac{|\sin a-\sin b|}{|a-b|} \leq 1
$$

and the claim follows upon multiplication by $|a-b|$.
(6) Let $x>0$. Show that $e^{x}>1+x$ and that $\log (1+x) \leq x$.

Solution: For the first claim, the function $f(x)=e^{x}$ is everywhere continuous and differentiable. Given $x>0$ by the MVT there is $c \in(0, x)$ such that

$$
\frac{e^{x}-e^{0}}{x-0}=f^{\prime}(c)=e^{c}
$$

Since $c>0$ we have $e^{c}>e^{0}=1$ so

$$
\frac{e^{x}-1}{x}>1
$$

Multiplying by x and adding 1 we get

$$
e^{x}>x+1
$$

Similarly, let $g(x)=\log (1+x)$ which is again differentiable and continuous on $x>-1$. In particular applying the MVT on the interval $[0, x]$ we get $c \in(0, x)$ such that

$$
\frac{\log (1+x)-\log (1+0)}{x-0}=\frac{g(x)-g(0)}{x-0}=g^{\prime}(c)=\frac{1}{1+c},
$$

where at the end we used $g^{\prime}(x)=\frac{1}{1+x}$. But if $c>0$ then $\frac{1}{1+c}<\frac{1}{1}=1$ and using $\log 1=0$ we conclude

$$
\frac{\log (1+x)}{x}<1
$$

and hence

$$
\log (1+x)<x
$$

