MATH 100 - SOLUTIONS TO WORKSHEET 16 MINIMA AND MAXIMA

1. Absolute minima and maxima by hand

(1) Find the absolute maximum and minimum values of $f(x)=|x|$ on the interval $[-3,5]$.

Solution: Absolute minimum 0 attained at $x=0$, absolute maximum 5 attained at $x=5$.
(2) Find the absolute maximum and minimum of $f(x)=\sqrt{x}$ on $[0,5]$.

Solution: This function is strictly increasing so its absolute minimum is $f(0)=0$ and its absolute maximum is $f(5)=\sqrt{5}$.

2. Local minima and derivatives

(1) (Final, 2011) Let $f(x)=6 x^{1 / 5}+x^{6 / 5}$.
(a) Find the critical numbers and singularities of f.

Solution: f is defined on \mathbb{R} (note the odd denominator in the power) and continuous there (defined by formula). We have

$$
f^{\prime}(x)=6 \cdot \frac{1}{5} x^{-4 / 5}+\frac{6}{5} x^{1 / 5}=\frac{6}{5}\left(x^{-4 / 5}+x^{1 / 5}\right)
$$

which exists for all $x \neq 0$ so $c=0$ is a singular point. For critical points we need to solve $f^{\prime}(c)=0$ that is

$$
\begin{aligned}
\frac{6}{5}\left(\frac{1}{c^{4 / 5}}+c^{1 / 5}\right) & =0 \\
1+c & =0 \\
c & =-1
\end{aligned}
$$

and we have a critical point at $c=1$.
(b) Find its absolute maximum and minimum on the interval $[-32,32]$.

Solution: Since f is continuous it's enough to check the critical points, singular points and endpoints of the internal. We have: $f(-32)=6(-2)+(-2)^{6}=52, f(-1)=6(-1)+(-1)^{6}=-5$ and $f(32)=6(2)+2^{6}=76$, so the absolute minimum is -5 attained at $x=-1$ and the absolute maximum is 76 attained at $x=32$.
(c)
(2) (caution)
(a) Show that $f(x)=(x-1)^{4}+7$ attains its absolute minimum at $x=1$.

Solution: $(x-1)^{4}$ is a square so its absolute minimum value is zero, attained when $x=1$.
(b) Show that $f(x)=(x-1)^{3}+7$ has $f^{\prime}(1)=0$ but has no local minimum or maximum there.

Solution: $(x-1)^{3}$ is an odd power, so is strictly increasing and has no minima or maxima. Nevertheless $f^{\prime}(x)=3(x-1)^{2}$ and $f^{\prime}(1)=0$.
(3) (Midterm, 2010) Find the maximum value of $x \sqrt{1-\frac{3}{4} x^{2}}$ on the interval $[0,1]$.

Solution: Let $f(x)=x \sqrt{1-\frac{3}{4} x^{2}}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\sqrt{1-\frac{3}{4} x^{2}}+\frac{1}{2} x \frac{-\frac{3}{4} \cdot 2 x}{\sqrt{1-\frac{3}{4} x^{2}}}=\sqrt{1-\frac{3}{4} x^{2}}-\frac{3}{4} \frac{x^{2}}{\sqrt{1-\frac{3}{4} x^{2}}} \\
& =\frac{\left(1-\frac{3}{4} x^{2}\right)-\frac{3}{4} x^{2}}{\sqrt{1-\frac{3}{4} x^{2}}}=\frac{1-\frac{3}{2} x^{2}}{\sqrt{1-\frac{3}{4} x^{2}}}
\end{aligned}
$$

This is defined for $|x|<\frac{2}{\sqrt{3}}$ and in particular in $[0,1]$ so f^{\prime} is defined in the whole interval and f is continuous there and has so singular points. It has critical points where $f^{\prime}(c)=0$ that is when

$$
\frac{1-\frac{3}{2} c^{2}}{\sqrt{1-\frac{3}{4} c^{2}}}=0
$$

Clearing the denominator we get

$$
\begin{aligned}
1-\frac{3}{2} c^{2} & =0 \\
c^{2} & =\frac{2}{3} \\
c & =\sqrt{\frac{2}{3}}
\end{aligned}
$$

so only one criticial point, $c=\sqrt{\frac{2}{3}}$ (note that the other root is outside the interval $[0,1]$). To find the maximum value we then need to consider $f(0)=0, f(1)=1 \sqrt{1-\frac{3}{4}}=\frac{1}{2}$ and $f\left(\sqrt{\frac{2}{3}}\right)$ which is

$$
f\left(\sqrt{\frac{2}{3}}\right)=\sqrt{\frac{2}{3}} \sqrt{1-\frac{3}{4} \cdot \frac{2}{3}}=\sqrt{\frac{2}{3}} \sqrt{\frac{1}{2}}=\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{4}}=\frac{1}{2}
$$

It follows that the absolute maximum is $\frac{1}{\sqrt{3}}$, attained at $x=\sqrt{\frac{2}{3}}$.
(4) (Final, 2007) Let $f(x)=x \sqrt{3-x}$.
(a) Find the domain of f.

Solution: f is defined where the number under the root is non-negative, that is when $3-x \geq 0$ that is when $x \leq 3$.
(b) Determine the x-coordinates of any local maxima or minima of f.

Solution: Differentiating we have

$$
f^{\prime}(x)=\sqrt{3-x}-\frac{x}{2 \sqrt{3-x}}=\frac{3-x}{\sqrt{3-x}}-\frac{x / 2}{\sqrt{3-x}}=\frac{3-\frac{3}{2} x}{\sqrt{3-x}}=\frac{3}{2} \frac{2-x}{\sqrt{3-x}}
$$

and we see that $f^{\prime}(x)$ is defined for all $x<3$ so any local minimum or maximum will satisfy $f^{\prime}(c)=0$. We see that this can only happen when the numerator vanishes, that is at $c=2$. Since for $c<2$ the derivative is positive (f increasing) while for $2<c<3$ the derivative is negative (f decreasing) we see that the point is a local maximum. Since $f(c)=2 \sqrt{3-2}=2$ the coordinates of the unique local maximum are $(2,2)$ and there are no local minima.

