MATH 100 - SOLUTIONS TO WORKSHEET 15 ESTIMATES ON TAYLOR APPROXIMATIONS

1. TAYLOR APPROXIMATIONS

(1) Find the $1^{\text {st }}$ and $2^{\text {nd }}$ order Taylor expansions of $x^{3 / 2}$ about $x=4$ and use them to approximate $(4.1)^{3 / 2}$.

Solution: let $f(x)=x^{3 / 2}$ and work about $a=4$. Then $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}, f^{\prime \prime}(x)=\frac{3}{4} x^{-1 / 2}$, so $f(4)=2^{3}=8, f^{\prime}(4)=\frac{3}{2} \cdot 2=3$ and $f^{\prime \prime}(4)=\frac{3}{4} 2^{-1}=\frac{3}{8}$.

$$
\begin{aligned}
& T_{1}(x)=f(a)+f^{\prime}(a)(x-a)=8+3(x-4) \\
& T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}=8+3(x-4)+\frac{3}{16}(x-4)^{2}
\end{aligned}
$$

Plugging in $x=4.1, x-a=\frac{1}{10}$ the linear approximation is $(4.1)^{3 / 2} \approx 8+\frac{3}{10}=8.3$ and the quadratic approximation is

$$
(4.1)^{3 / 2} \approx 8+\frac{3}{10}+\frac{3}{1600}
$$

(2) Find the $2^{\text {nd }}$ order Taylor expansion of $x^{3 / 2}+3 x$ about $x=4$.

See solution to worksheet 14
(3) Find the 8 th order expansion of $f(x)=e^{x^{2}}+\cos (5 x)$. What is $f^{(6)}(0)$?

See solution to worksheet 14

2. ERror estimates

Let $R_{1}(x)=f(x)-T_{1}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{1}(x)=\frac{f^{(2)}(c)}{2!}(x-a)^{2}
$$

(1) Estimate the error in the linear approximation to $(4.1)^{3 / 2}$.

Solution: Continuing with $f(x)=x^{3 / 2}$, by the Lagrange form of the remainder, we have

$$
R_{1}(x)=\frac{1}{2} f^{(2)}(c)(x-a)^{2}
$$

for some c between x and a. For us $x=4.1, a=4$ so there is $c \in(4,4.1)$ such that

$$
R_{1}(4.1)=\frac{1}{2}\left(\frac{3}{8} c^{-1 / 2}\right)(4.1-4)^{2}=\frac{3}{1600} c^{-1 / 2}
$$

Now the function $c^{-1 / 2}$ is decreasing on $[4,4.1]$ so $c^{-1 / 2} \leq 4^{-1 / 2}=\frac{1}{2}$ and

$$
R_{1}(4.1) \leq \frac{3}{3200}<\frac{1}{1000}
$$

Let $R_{n}(x)=f(x)-T_{n}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

(2) Estimate the error in the quadratic approximation to $(4.1)^{3 / 2}$.

Solution: By the Lagrange form of the remainder, we have

$$
R_{2}(x)=\frac{1}{3!} f^{(3)}(c)(x-a)^{3}
$$

for some c between x and a. Since $f^{(2)}(x)=\frac{3}{8} x^{-1 / 2}$ we get $f^{(3)}(x)=-\frac{3}{16} x^{-3 / 2}$. For us $x=4.1$, $a=4$ so there is $c \in(4,4.1)$ such that

$$
R_{2}(4.1)=\frac{1}{6}\left(\frac{3}{16} c^{-3 / 2}\right)(4.1-4)^{3}=-\frac{1}{32,000} c^{-3 / 2}
$$

This is negative, so we have an over-estimate. Also, the function $c^{-3 / 2}$ is decreasing on $[4,4.1]$ so $c^{-3 / 2} \leq 4^{-3 / 2}=\frac{1}{8}$ and

$$
\left|R_{2}(4.1)\right| \leq \frac{1}{32,000} \cdot \frac{1}{8}=\frac{1}{256,000}
$$

(3) Estimate the error in the 4th order approximation to $\cos (0.5)$

Solution: Expanding $f(x)=\cos (x)$ about zero, by the Lagrange form of the remainder, we have $0<c<0.5$ for which

$$
R_{4}(x)=\frac{f^{(5)}(c)}{5!}(x-a)^{5}
$$

that is

$$
R_{4}(0.5)=\frac{-\sin (c)}{5!}(0.5)^{5}=-\frac{\sin (c)}{32 \cdot 120}
$$

Now $|\sin (c)| \leq 1$ so

$$
\left|R_{4}(0.5)\right| \leq \frac{1}{32 \cdot 120}=\frac{1}{3840}
$$

Common error: The $4^{\text {th }}$ order expansion reads $\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$. There is no x^{5} term since $f^{(5)}(a)=f^{(5)}(0)=0$. But THIS DOES NOT MEAN that $f^{(5)}(c)=0-$ the value of c for which the Lagrange form holds need not be an endpoint (in fact, it never is).

