MATH 100 - WORKSHEET 14
 TAYLOR POLYNOMIALS

1. TAYLOR EXPANSION OF e^{x}
(1) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.
2. Do the same with $f(x)=\ln x$ about $x=1$.

2. General formula

The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

where $c_{k}=\frac{f^{(k)}(a)}{k!}$.
(1) Find the 4th order Maclaurin expansion of $\frac{1}{1-x}$.
(2) Find the nth order expansion of $\cos x$.

3. New from old

(1) Find the 3rd order Taylor expansion of \sqrt{x} about $x=4$ and use it to approximate $\sqrt{4.1}$.
(2) Find the 3rd order Taylor expansion of $\sqrt{x}+3 x$ about $x=4$.
(3) Find the 8 th order expansion of $f(x)=e^{x^{2}}+\cos (2 x)$. What is $f^{(6)}(0)$?

