MATH 100 - WORKSHEET 14 TAYLOR POLYNOMIALS

1. Taylor expansion of e^x

(1) Let $f(x) = e^x$

- (a) Find $f(0), f'(0), f^{(2)}(0), \cdots$
- (b) Find a simple polynomial $T_0(x)$ such that $T_0(0) = f(0)$.
- (c) Find a simple polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$. (d) Find a simple polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$. (e) Find a simple polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$.

2. Do the same with $f(x) = \ln x$ about x = 1.

Date: 27/10/2012, Worksheet by Lior Silberman.

The *n*th order Taylor expansion of f(x) about x = a is the polynomial $T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$ where $c_k = \frac{f^{(k)}(a)}{k!}$.

(1) Find the 4th order Maclaurin expansion of $\frac{1}{1-x}$.

(2) Find the *n*th order expansion of $\cos x$.

3. New from old

(1) Find the 3rd order Taylor expansion of \sqrt{x} about x = 4 and use it to approximate $\sqrt{4.1}$.

(2) Find the 3rd order Taylor expansion of $\sqrt{x} + 3x$ about x = 4.

(3) Find the 8th order expansion of $f(x) = e^{x^2} + \cos(2x)$. What is $f^{(6)}(0)$?