MATH 100 - SOLUTIONS TO WORKSHEET 14 TAYLOR POLYNOMIALS

1. TAYLOR EXPANSION OF e^{x}

(1) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

Solution:

(a) $f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}$, and in fact $f^{(k)}(x)=e^{x}$ for all x. Since $e^{0}=1$ we see that $f^{k}(0)=1$ for all k.
(b) $T_{0}(x)=1$ works.
(c) Suppose $T_{1}(x)=a+b x$. Then $T_{1}(0)=a$ so need $a=f(0)=1$. Also, $T_{1}^{\prime}(x)=b$ so need $b=1$ and get

$$
T_{1}(x)=1+x
$$

(d) Suppose $T_{2}(x)=1+x+c x^{2}$. Then $T_{2}(0)=1, T_{2}^{\prime}(x)=1+2 c x$ so $T_{2}^{\prime}(0)=1$. Also, $T_{2}^{\prime \prime}(x)=2 c$ so to get $T_{2}^{\prime \prime}(0)=f^{\prime \prime}(0)=1$ need $c=\frac{1}{2}$ and we get

$$
T_{2}(x)=1+x+\frac{1}{2} x^{2}
$$

(e) Suppose $T_{3}(x)=1+x+\frac{1}{2} x^{2}+d x^{3}$. Then $T_{3}^{(3)}(x)=3 \cdot 2 d$ so to get $T_{2}^{(3)}(0)=f^{(3)}(0)=1$ need $d=\frac{1}{6}$ and we get

$$
T_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
$$

2. Do the same with $f(x)=\ln x$ about $x=1$.Solution:
(1) $f^{\prime}(x)=\frac{1}{x}, f^{(2)}(x)=-\frac{1}{x^{2}}, f^{(3)}(x)=\frac{2}{x^{3}}$. Thus $f(1)=0, f^{(1)}(1)=1, f^{(2)}(1)=-1, f^{(3)}(1)=2$.
(2) $T_{0}(x)=0$.
(3) Suppose $T_{1}(x)=0+b x$. Then we need $b=f^{\prime}(1)=1$. so we get

$$
T_{1}(x)=x
$$

(4) Suppose $T_{2}(x)=x+c x^{2}$. Then $T_{2}^{(2)}(x)=2 c$ so to get $T_{2}^{(2)}(1)=f^{(2)}(1)=-1$ need $c=-\frac{1}{2}$ and we get

$$
T_{2}(x)=x-\frac{1}{2} x^{2}
$$

(5) Suppose $T_{3}(x)=x-\frac{1}{2} x^{2}+d x^{3}$. Then $T_{3}^{(3)}(x)=3 \cdot 2 d$ so to get $T_{2}^{(3)}(1)=f^{(3)}(1)=2$ need $d=\frac{2}{6}=3$ and we get

$$
T_{3}(x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}
$$

2. GENERAL FORMULA

The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

where $c_{k}=\frac{f^{(k)}(a)}{k!}$.
(1) Find the 4th order Maclaurin expansion of $\frac{1}{1-x}$.

Solution: For $f(x)=\frac{1}{1-x}$ we have $f^{(1)}(x)=\frac{1}{(1-x)^{2}}, f^{(2)}(x)=\frac{2}{(1-x)^{3}}, f^{(3)}(x)=\frac{2 \cdot 3}{(1-x)^{4}}, f^{(4)}(x)=$ $\frac{2 \cdot 3 \cdot 4}{(1-x)^{5}}$. We therefore have $f(0)=1=0!, f^{(1)}(0)=1=1!, f^{(2)}(0)=2!, f^{(3)}(0)=3!, f^{(4)}(0)=4$! and hence

$$
\begin{aligned}
T_{4}(x) & =\frac{0!}{0!}+\frac{1!}{1!} x+\frac{2!}{2!} x^{2}+\frac{3!}{3!} x^{3}+\frac{4!}{4!} x^{4} \\
& =1+x+x^{2}+x^{3}+x^{4} .
\end{aligned}
$$

(2) Find the nth order expansion of $\cos x$.

Solution: For $g(x)=\cos x$ the derivatives are $g^{(0)}(x)=\cos x, g^{(1)}(x)=-\sin x, g^{(2)}(x)=-\cos x$, $g^{(3)}(x)=\sin x, g^{(4)}(x)=\cos x$ and then the derivatives repeat. It follows that the derivatives at zero are $1,0,-1,1$, and then repeat periodically. We conclude that the odd terms all vanish, and the even terms are the same as those of e^{x} but switch sign:

$$
\cos x \approx 1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}-\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

3. New from old

(1) Find the 3rd order Taylor expansion of \sqrt{x} about $x=4$ and use it to approximate $\sqrt{4.1}$.

Solution: Let $f(x)=\sqrt{x}, a=4$. Then $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, f^{(2)}(x)=-\frac{1}{4} x^{-3 / 2}, f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. Therefore $f(4)=2, f^{\prime}(4)=\frac{1}{4}, f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=\frac{3}{256}$. We have

$$
\begin{aligned}
T_{3}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3} \\
& =2+\frac{1}{4}(x-4)+\frac{1}{2}\left(-\frac{1}{32}\right)(x-4)^{2}+\frac{1}{6}\left(\frac{3}{256}\right)(x-4)^{3} \\
& =2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
\end{aligned}
$$

For us $x=4.1$ so $x-a=4.1-4=\frac{1}{10}$ and we get

$$
\sqrt{4.1} \approx T_{3}(4.1)=2+\frac{1}{40}-\frac{1}{6400}+\frac{1}{512,000}
$$

(2) Find the 3rd order Taylor expansion of $\sqrt{x}+3 x$ about $x=4$.

Solution: We already know the expansion of \sqrt{x}. For $3 x$ the value at 4 is 12 and the slope is 3 so $3 x=12+3(x-4)$. Thus

$$
\begin{aligned}
\sqrt{x}+3 x & \approx\left(2+\frac{1}{4}(x-4)+\frac{1}{2}\left(-\frac{1}{32}\right)(x-4)^{2}+\frac{1}{6}\left(\frac{3}{256}\right)(x-4)^{3}\right)+(12+3(x-4)) \\
& =14+3 \frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}
\end{aligned}
$$

(3) Find the 8 th order expansion of $f(x)=e^{x^{2}}+\cos (2 x)$. What is $f^{(6)}(0)$?

Solution: We already know that $e^{y} \approx 1+y+\frac{1}{2} y^{2}+\frac{1}{6} y^{3}+\frac{1}{24} y^{4}$ to fourth order. Plugging in x^{2} we find

$$
e^{x^{2}} \approx 1+x^{2}+\frac{1}{2} x_{2}^{4}+\frac{1}{6} x^{6}+\frac{1}{24} x^{8}
$$

(and see that terms y^{k} with $k>4$ would give terms $x^{2 k}$ with $2 k>8$ so not relevant). Similarly, using $\cos y \approx 1-\frac{1}{2} y^{2}+\frac{1}{24} y^{4}-\frac{1}{6!} y^{6}+\frac{1}{8!} y^{8}$ and plugging in $y=2 x$ we get

$$
\begin{aligned}
\cos (2 x) & \approx 1-\frac{1}{2}(2 x)^{2}+\frac{1}{24}(2 x)^{4}-\frac{1}{6!}(2 x)^{6}+\frac{1}{8!}(2 x)^{8} \\
& =1-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\frac{2}{215} x^{8}
\end{aligned}
$$

We conclude that the 8th order expansion is:

$$
\begin{aligned}
e^{x^{2}}+\cos (2 x) & \approx(1+1)+(1-2) x^{2}+\left(\frac{1}{2}+\frac{2}{3}\right) x^{4}+\left(\frac{1}{6}-\frac{4}{45}\right) x^{6}+\left(\frac{1}{24}+\frac{2}{315}\right) x^{8} \\
& =2-x^{2}+\frac{7}{6} x^{4}+\frac{7}{90} x^{6}+\frac{121}{2520} x^{8}
\end{aligned}
$$

We now use the Taylor expansion rule in reverse: the coefficient of x^{6} is $\frac{7}{90}$, but it is also $\frac{f^{(6)}(0)}{6!}$ so

$$
\frac{f^{(6)}(0)}{6!}=\frac{7}{90}
$$

and

$$
f^{(6)}(0)=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{2 \cdot 5 \cdot 9}=56 .
$$

