MATH 100 - WORKSHEET 13 RELATED RATES AND THE LINEAR APPROXIMATION

1. Related rates

(1) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.
(2) Two ships are travelling near an island. The first is located 20 km due west of it and is moving due north at $5 \mathrm{~km} / \mathrm{h}$. The second is located 15 km due south of it and is moving due south at $7 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing?
(3) The same setting, but now the first ship is moving toward the island.
(4) A conical drain is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rain water at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?
(b) The drain is unclogged and water begins to clear at the rate of $15 \mathrm{~m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $40 \mathrm{~m} / \mathrm{min}$?

2. The Linear Approximation

Fact. For x near a we have $f(x) \approx L(x)$ where

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

(1) Use a linear approximation to estimate
(a) $\sqrt{1.2}$
(b) $(15)^{1 / 4}$
(c) $\log 3$

