# MATH 100 - SOLUTIONS TO WORKSHEET 13 RELATED RATES AND THE LINEAR APPROXIMATION 

## 1. Related Rates

(1) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.

Solution 1 Differentiate using the chain rule to find $2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=\left(3 x^{2}+2\right) \frac{\mathrm{d} x}{\mathrm{~d} t}$, so

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 y}{3 x^{2}+2} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

and at the given instand we get

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 \cdot \sqrt{3}}{2 \cdot 1^{2}+2} \cdot 1=\frac{2 \sqrt{3}}{5}
$$

Solution 2 Implicit differentiation gives $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(3 x^{2}+2\right)$, so

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+2}{2 y}
$$

and at the given point $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{2 \sqrt{3}}$.
Finally, by the chain rule $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}$ so

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} y / \mathrm{d} x}=\frac{1}{5 /(2 \sqrt{3})}=\frac{2 \sqrt{3}}{5}
$$

(2) Two ships are travelling near an island. The first is located 20 km due west of it and is moving due north at $5 \mathrm{~km} / \mathrm{h}$. The second is located 15 km due south of it and is moving due south at $7 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing?

## Solution

(a) Draw picture (skipped); put co-ordinate system centered at the island with $y$-axis going northsouth and $x$-axis going east-west.
(b) Parametrize: the first ship is moving north-south, so write its location as $\left(-20, y_{1}(t)\right)$. The second ship is moving north-south too, so parametrize its location is $\left(0, y_{2}(t)\right)$. Write $D$ for the distance between the ships.
(c) Find relations: By Pythagoras, we have:

$$
D^{2}=(-20-0)^{2}+\left(y_{1}-y_{2}\right)^{2}
$$

(d) Calculus: Differentiating with respect to time and using the chain rule, we find

$$
\begin{aligned}
2 D \cdot \frac{\mathrm{~d} D}{\mathrm{~d} t} & =0+\frac{\mathrm{d}}{\mathrm{~d} t}\left[\left(y_{1}-y_{2}\right)^{2}\right]=2\left(y_{1}-y_{2}\right) \frac{\mathrm{d}}{\mathrm{~d} t}\left[y_{1}-y_{2}\right] \\
& =2\left(y_{1}-y_{2}\right)\left(\frac{\mathrm{d} y_{1}}{\mathrm{~d} t}-\frac{\mathrm{d} y_{2}}{\mathrm{~d} t}\right)
\end{aligned}
$$

(e) Solve: We conclude that

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{y_{1}-y_{2}}{D}\left(\frac{\mathrm{~d} y_{1}}{\mathrm{~d} t}-\frac{\mathrm{d} y_{2}}{\mathrm{~d} t}\right)
$$

At the given time we have $y_{1}=0, y_{2}=-15, D=\sqrt{20^{2}+15^{2}}=\sqrt{5^{2}\left(4^{2}+3^{2}\right)}=5 \sqrt{25}=25$, $\frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=5$ (moving north!), $\frac{\mathrm{d} y_{2}}{\mathrm{~d} t}=-7$ (moving south!) so

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{0-(-15)}{25}(5-(-7))=\frac{15 \cdot 12}{25}=\frac{36}{5} \mathrm{~km} / \mathrm{h}
$$

(3) The same setting, but now the first ship is moving toward the island.

## Solution

(a) Draw picture: same as before
(b) Parametrize: the first ship is now moving east-west, so write its location as $(x(t), 0)$. The second ship is still moving north-south, so parametrize its location is $(0, y(t))$. Write $D$ for the distance between the ships.
(c) Find relations: By Pythagoras, we have:

$$
D^{2}=x^{2}+y^{2}
$$

(d) Calculus: Differentiating with respect to time and using the chain rule, we find

$$
2 D \frac{\mathrm{~d} D}{\mathrm{~d} t}=2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

(e) Solve: We conclude that

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{1}{D}\left(x \frac{\mathrm{~d} x}{\mathrm{~d} t}+y \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)
$$

At the given time we have $x=-20, y=-15, D=\sqrt{20^{2}+15^{2}}=25, \frac{\mathrm{~d} x}{\mathrm{~d} t}=5$ (moving east!), $\frac{\mathrm{d} y}{\mathrm{~d} t}=-7$ (moving south!) so

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{1}{25}(-20 \cdot 5+(-15)(-7))=\frac{105-100}{25}=\frac{1}{5} \mathrm{~km} / \mathrm{h}
$$

(4) A conical drain is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rain water at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?

## Solution

(i) Draw picture: (skipped) the water inside the cone fills a conical shape.
(ii) Parametrize: Say the drain has height $H$ and radius $R$ at the top. The water has height $\bar{h}$ and radius $r$ at the top. Say the water volume is $V$.
(iii) Find relations: We know that $V=\frac{1}{3} \pi r^{2} h$. Taking a vertical cross-section of the cone (draw picture!) we get from similar triangles that

$$
\frac{r}{h}=\frac{R}{H} .
$$

The problem involves heights so we'd like to eliminate $r$. Setting $r=\frac{R}{H} h$ we see that

$$
V=\frac{1}{3} \pi\left(\frac{R}{H} h\right)^{2} h=\frac{1}{3} \pi\left(\frac{R}{H}\right)^{2} h^{3}
$$

(iv) Calculus: Differentiating and applying the chain rule we find

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi\left(\frac{R}{H}\right)^{2} 3 h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=\pi\left(\frac{R}{H}\right)^{2} h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t} .
$$

(v) Solve: In this problem $\frac{R}{H}=\frac{1}{6}$, and at the given time, $\frac{\mathrm{d} V}{\mathrm{~d} t}=5, h=5$ so

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{5}{\pi \frac{1}{6^{2}} 5^{2}}=\frac{36}{5 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
$$

(b) The drain is unclogged and water begins to clear at the rate of $15 \mathrm{~m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $40 \mathrm{~m} / \mathrm{min}$ ?
Solution We return to the relation

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\pi\left(\frac{R}{H}\right)^{2} h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}
$$

We are now given $\frac{\mathrm{d} V}{\mathrm{~d} t}=5-15=-10 \frac{\mathrm{~m}^{3}}{\min }, \frac{\mathrm{~d} h}{\mathrm{~d} t}=-40 \frac{\mathrm{~m}}{\min }$ so

$$
h^{2}=\frac{-10}{-40 \pi(1 / 6)^{2}}=\frac{6^{2}}{2^{2} \pi}
$$

and

$$
h=\frac{3}{\sqrt{\pi}} \mathrm{~m}
$$

at the given time.

## 2. The Linear Approximation

Fact. For $x$ near a we have $f(x) \approx L(x)$ where

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

(1) Use a linear approximation to estimate
(a) $\sqrt{1.2}$

Solution Let $f(x)=\sqrt{x}$. We need to approximate $f(1.2)$ so we'll use a linear approximation about $a=1$. We have $f(a)=f(1)=\sqrt{1}=1$ and since $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ that $f^{\prime}(a)=f^{\prime}(1)=$ $\frac{1}{2 \sqrt{1}}=\frac{1}{2}$. The linear approximation is therefore

$$
\sqrt{1.2} \approx 1+\frac{1}{2}(1.2-1)=1+\frac{1}{2}(0.2)=1.1 .
$$

Remark (not relevant to solving problem) To get a better appoximation we can use our approximation $1.1^{2}=1.21 \approx 1.2$ to switch and use $a=1.21$. We have $f(a)=\sqrt{1.21}=1.1$ $f^{\prime}(a)=\frac{1}{2 \sqrt{a}}=\frac{1}{2 \cdot 1.1}=\frac{1}{2.2}$ and hence

$$
\sqrt{1.2} \approx 1.1+\frac{1}{2.2}(1.2-1.21)=1.1-\frac{0.01}{2.2}=1.1-\frac{1}{220} \approx 1.095
$$

Repeatedly using this idea is known as "Newton's Method".
(b) $(15)^{1 / 4}$

Solution Let $f(x)=x^{1 / 4}$. We need to approximate $f(15)$. Since $16^{1 / 4}$ is easy to calculate we'll use a linear approximation about $a=4$. We have $f(a)=f(16)=16^{1 / 4}=2$ and since $f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$ that

$$
f^{\prime}(a)=\frac{1}{4}(16)^{-3 / 4}=\frac{1}{4}\left((16)^{1 / 4}\right)^{-3}=\frac{1}{4}(2)^{-3}=\frac{1}{4 \cdot 8}=\frac{1}{32} .
$$

The linear approximation is therefore

$$
(15)^{1 / 4} \approx 2+\frac{1}{32}(15-16)=2-\frac{1}{32}=\frac{63}{32} .
$$

(c) $\log 3$

Solution 1 Let $f(x)=\log x$. We need to approximate $f(3)$. We know $f(1)=\log 1=0$ and $f^{\prime}(x)=\frac{1}{x}$ so $f^{\prime}(1)=1$ so try linear approximation about $a=1$. Get

$$
\log 3 \approx 0+1(3-1)=2
$$

Solution 2 The problem was that 3 was too far away from 1. Noticing that $\log 3=-\log \frac{1}{3}$ let's again approximate about $a=1$ to get:

$$
\log 3=-\log \frac{1}{3} \approx-\left(0+1\left(\frac{1}{3}-1\right)\right)=\frac{2}{3} .
$$

This is surely too small ( $3>e$ so $\log 3>1$ ), but better.
Solution 3 Why not try expanding about $a=e$ ? We know that $\log e=1$ and since $(\log x)^{\prime}=\frac{1}{x}$ that the derivative at $e$ is $\frac{1}{e}$ so

$$
\log 3 \approx \log e+\frac{1}{e}(3-e)=1+\frac{3}{e}-1=\frac{3}{e} .
$$

This solution is less satisfactory than the first two since we it's not a rational number: it depends on having a precise value for $e$.

