# MATH 100 - SOLUTIONS TO WORKSHEET 11 LOGARITHMIC DIFFERENTIATION, APPLICATIONS 

## 1. Logarithmic Differentiation

(1) Differentiate.
(a) $x^{x}$

Solution: We use logarithmic differentiation: $f^{\prime}=f \cdot(\log f)^{\prime}$. Here $\log \left(x^{x}\right)=x \log x$ so by the product rule $\left(\log \left(x^{x}\right)\right)^{\prime}=\log x+\frac{x}{x}=1+\log x$ and

$$
\left(x^{x}\right)^{\prime}=x^{x}(1+\log x)
$$

(b) $(\log x)^{\cos x}$

Solution: We use logarithmic differentiation: $f^{\prime}=f \cdot(\log f)^{\prime}$. Here $\log \left((\log x)^{\cos x}\right)=\cos x \cdot \log \log x$ so by the product rule and the chain rule, $\left(\log \left((\log x)^{\cos x}\right)\right)^{\prime}=-\sin x \log \log x+\cos x(\log \log x)^{\prime}=$ $-\sin x \log \log x+\cos x \frac{1}{\log x} \frac{1}{x}$ and

$$
\left((\log x)^{\cos x}\right)^{\prime}=(\log x)^{\cos x}\left(\frac{\cos x}{x \log x}-\sin x \log \log x\right)
$$

(c) (Final 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x$ only.

Solution: We use logarithmic differentiation: $\frac{\mathrm{d} y}{\mathrm{~d} x}=y \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\log y)$. Here $\log y=\log \left(x^{\log x}\right)=$ $\log x \cdot \log x=\log ^{2} x$ so by the chain rule $\frac{\mathrm{d} \log y}{\mathrm{~d} x}=2 \log x \frac{1}{x}$ and

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y \cdot \frac{2 \log x}{x}=x^{\log x} \cdot \frac{2 \log x}{x}=2 x^{\log x-1} \log x
$$

## 2. Applications

(1) The position of a particle at time $t$ is given by $f(t)=\frac{1}{\pi} \sin (\pi t)$.
(a) Find the velocity at time $t$, and specifically at $t=3$.

Solution: $v(t)=\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{1}{\pi}(\pi \cos (\pi t))=\cos (\pi t)$ so that $v(3)=\cos (3 \pi)=\cos (\pi)=-1$.
(b) When is the particle accelerating? Decelerating?

Solution: $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\pi \sin (\pi t)$ so the acceleration is positive when $\sin (\pi t)<0$ (when $t \in(2 k-1,2 k)$ for some $k \in \mathbb{Z}$ ) and positive when $\sin (\pi t)>0$ (when $t \in(2 k, 2 k+1)$ for some $k \in \mathbb{Z}$ ). However, in everyday language we usually say "accelerate" when the speed increases, not when the velocity increases (these are different when the velocity is negative!); you may want to work out the times when $a(t), v(t)$ have the same sign ("acceleration") and $a(t), v(t)$ have opposite signs ("decceleration").
(2)
(a) Water is filling a cylindrical container of radius $r=10 \mathrm{~cm}$. Suppose that at time $t$ the height of the water is $\left(t+t^{2}\right) \mathrm{cm}$. How fast is the volume growing?
Solution: The volume of a cylinder of height $h$ is $V=\pi r^{2} h$ so we have $V(t)=\pi r^{2}\left(t+t^{2}\right)$ and (since $r=10$ for us)

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=100 \pi(1+2 t)
$$

(b) A rocket is flying in space. The momentum of the rocket is given by the formula $p=m v$, where $m$ is the mass and $v$ is the velocity. At a time where the mass of the rocket is $m=1000 \mathrm{~kg}$ and its velocity is $v=500 \frac{\mathrm{~m}}{\mathrm{sec}}$ the rocket is accelerating at the rate $a=20 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$ and losing mass at the rate $10 \frac{\mathrm{~kg}}{\mathrm{sec}}$. Find the rate of change of the momentum with time.
Solution: Differentiating $p=m v$ using the product rule we find:

$$
F=\frac{\mathrm{d} p}{\mathrm{~d} t}=\frac{\mathrm{d} m}{\mathrm{~d} t} v+m \frac{\mathrm{~d} v}{\mathrm{~d} t}=-10 \cdot 500+1000 \cdot 20=15,000 \frac{\mathrm{kgm}}{\mathrm{~s}^{2}}
$$

(3) A ball is falling from rest in air. Its height at time $t$ is given by

$$
h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)
$$

where $H_{0}$ is the initial height and $t_{0}$ is a constant.
(a) Find the velocity of the ball.

$$
\begin{aligned}
v(t) & =\frac{\mathrm{d} h}{\mathrm{~d} t} \\
& =0-g t_{0}\left(1+t_{0} e^{-t / t_{0}}\left(-\frac{1}{t_{0}}\right)-0\right) \\
& =-g t_{0}\left(1-e^{-t / t_{0}}\right) .
\end{aligned}
$$

(b) Find the acceleration.

$$
\begin{aligned}
a(t) & =\frac{\mathrm{d} v}{\mathrm{~d} t} \\
& =-g t_{0}\left(0-e^{-t / t_{0}}\left(-\frac{1}{t_{0}}\right)\right) \\
& =-g e^{-t / t_{0}} .
\end{aligned}
$$

(c) Find $\lim _{t \rightarrow \infty} v(t)$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} v(t) & =\lim _{t \rightarrow \infty}\left(-g t_{0}\left(1-e^{-t / t_{0}}\right)\right) \\
& =-g t_{0}\left(1-\lim _{t \rightarrow \infty} e^{-t / t_{0}}\right)=-g t_{0}(1-0) \\
& =-g t_{0} \cdot
\end{aligned}
$$

