## MATH 100 - WORKSHEET 10 LOGARITHMS AND THEIR DERIVATIVES

## 1. Inverse Trig \& Differentiation

Fact. $\frac{\mathrm{d} \arcsin x}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}, \frac{\mathrm{~d} \arctan x}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$.
(1) The angle $\theta$ lies in the range $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and satisfies $\sin (\theta)=0.4$. find $\tan \theta$.
(2) (Final 2011) Find the derivative of $\arcsin (3 x+1)$

## 2. Review of Logarithms

$$
\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x
$$

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y
$$

$$
\log _{b}\left(x^{y}\right)=y \log _{b} x
$$

$$
\log _{b} \frac{1}{x}=-\log _{b} x
$$

(1) $\log \left(e^{10}\right)=$

$$
\log \left(2^{100}\right)=
$$

(in terms of $\log 2$ )
(2) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do $N_{0}$ operations per second.
(a) Write a formula for the power of computers $t$ years into the future:

- Computers $t$ years from now will be able to do $N(t)$ operations per second where

$$
N(t)=
$$

(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
(c) At what time will computers be powerful enough to complete the task in 6 months?
3. Differentiation

$$
(\log x)^{\prime}=\frac{1}{x} \quad f^{\prime}=f \times(\log f)^{\prime}
$$

(1) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$
$\frac{\mathrm{d}}{\mathrm{d} t} \log \left(t^{2}+3 t\right)=$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$
$\frac{\mathrm{d}}{\mathrm{d} r} \frac{1}{\log (2+\sin r)}=$
(c) Find $y^{\prime}$ if $\log (x+y)=e^{y}$

