MATH 100 - SOLUTION TO WORKSHEET 10 LOGARITHMS AND THEIR DERIVATIVES

1. Inverse Trig \& Differentiation

(1) The angle θ lies in the range $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and satisfies $\sin (\theta)=0.4$. find $\tan \theta$.

Solution: By Pythagoras we have $\sin ^{2} \theta+\cos ^{2} \theta=1$ so $\cos ^{2} \theta=1-0.4^{2}=0.84$. In the range $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ the cosine function is positive, so $\cos \theta=\sqrt{0.84}$ and

$$
\tan \theta=\frac{0.4}{\sqrt{0.84}}
$$

(2) (Final 2011) Find the derivative of $\arcsin (3 x+1)$

Solution: Applying the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arcsin (3 x+1)=\frac{1}{\sqrt{1-(3 x+1)^{2}}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}[3 x+1]=\frac{3}{\sqrt{-6 x-9 x^{2}}}
$$

2. Review of Logarithms
(1) $\log \left(e^{10}\right)=10 \quad \log \left(2^{100}\right)=100 \log 2$
(2) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_{0} operations per second.
(a) Write a formula for the power of computers t years into the future:

- Computers t years from now will be able to do $N(t)$ operations per second where

$$
N(t)=N_{0} 2^{t / 1.5}
$$

Explanantion: we are given that there is a doubling every 18 months, so $t / 1.5$ doublings in t years.
(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
Solution: In 3 years we will see 2 doublings, so the computers will be $2^{2}=4$ times as powerful and will complete the computation in $\frac{10}{4}=2.5$ years. We'll then have the answer 5.5 years from now (don't forget the endgame!)
(c) At what time will computers be powerful enough to complete the task in 6 months?

Solution: t years from now computers will complete the task in $\frac{10}{2^{t / 1.5}}$ years, so we need to find t such that

$$
\frac{10}{2^{t / 1.5}}=\frac{1}{2} .
$$

Clearing denominators this gives

$$
20=2^{t / 1.5}
$$

Taking logarithms we get
so

$$
\log 20=\frac{t}{1.5} \log 2
$$

$$
t=1.5 \frac{\log 20}{\log 2} \text { years }
$$

Date: 13/10/2015, Worksheet by Lior Silberman.

3. Differentiation

(1) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=\frac{1}{a x} \cdot a=\frac{1}{x} \quad \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \log \left(t^{2}+3 t\right)=\frac{1}{t^{2}+3 t} \cdot(2 t+3)=\frac{2 t+3}{t^{2}+3 t}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right) \stackrel{\text { pdt }}{=} 2 x \log \left(1+x^{2}\right)+x^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \log \left(1+x^{2}\right) \stackrel{\text { chain }}{=} 2 x \log \left(1+x^{2}\right)+x^{2} \frac{1}{1+x^{2}} \cdot 2 x$ so

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{2} \log \left(1+x^{2}\right)\right]=2 x \log \left(1+x^{2}\right)+\frac{2 x^{3}}{1+x^{2}} . \\
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)} \stackrel{\text { chain }}{=}-\frac{1}{\log ^{2}(2+\sin r)} \frac{\mathrm{d}}{\mathrm{~d} r}[\log (2+\sin r)] \stackrel{\text { chain }}{=}-\frac{1}{\log ^{2}(2+\sin r)} \frac{1}{2+\sin r} \frac{\mathrm{~d}}{\mathrm{~d} r}[2+\sin r] \text { so } \\
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=-\frac{\cos r}{(2+\sin r) \log ^{2}(2+\sin r)} .
\end{gathered}
$$

(c) Find y^{\prime} if $\log (x+y)=e^{y}$.

Solution: We differentiate both sides to get:

$$
\frac{1}{x+y}\left(1+y^{\prime}\right)=e^{y} y^{\prime}
$$

We now solve for y^{\prime} :

$$
\begin{aligned}
\frac{1}{x+y}+\frac{y^{\prime}}{x+y} & =e^{y} y^{\prime} \\
\frac{1}{x+y} & =\left(e^{y}-\frac{1}{x+y}\right) y^{\prime} \\
y^{\prime} & =\frac{1 /(x+y)}{e^{y}-1 /(x+y)}=\frac{1}{(x+y) e^{y}-1}
\end{aligned}
$$

