MATH 100 - WORKSHEET 9

 IMPLICIT DIFFERENTIATION

 IMPLICIT DIFFERENTIATION}

1. Implicit Differentiation

(1) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.

Solution: We differentiate the equation with respect to x to get using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(4 x^{3}+2 x\right) \\
2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =12 x^{2}+2
\end{aligned}
$$

so that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x^{2}+1}{y}
$$

We conclude that at the point $x=2, y=6$ we have $y^{\prime}=\frac{25}{6}$, so the tangent line has the equation

$$
y=\frac{25}{6}(x-2)+6
$$

(2) Find $y^{\prime \prime}$ if $x^{5}+y^{5}=10$.

Solution 1: We differentiate the equation with respect to x and get

$$
5 x^{4}+5 y^{4} y^{\prime}=0
$$

so

$$
y^{\prime}=-\frac{x^{4}}{y^{4}}
$$

We differentiate again and apply the quotient rule and the chain rule to get:

$$
y^{\prime \prime}=-\frac{4 x^{3} y^{4}-x^{4} 4 y^{3} y^{\prime}}{y^{8}}=-4 \frac{x^{3} y-x^{4} y^{\prime}}{y^{5}}
$$

Susbtituting our formula for y^{\prime} we get

$$
y^{\prime \prime}=-4 \frac{x^{3} y+x^{8} / y^{4}}{y^{5}}=-4 \frac{x^{3} y^{5}+x^{8}}{y^{9}}
$$

Solution 2: We differentiate the equation with respect to x and get

$$
5 x^{4}+5 y^{4} y^{\prime}=0
$$

We then differentiate again to get

$$
20 x^{3}+20 y^{3}\left(y^{\prime}\right)^{2}+5 y^{4} y^{\prime \prime}=0
$$

Dividing by 5 and substituting $y^{\prime}=-\frac{x^{4}}{y^{4}}$ gives

$$
\begin{aligned}
-y^{4} y^{\prime \prime} & =4 x^{3}+4 y^{3} \frac{x^{8}}{y^{8}} \\
& =4 \frac{x^{3} y^{5}+x^{8}}{y^{5}}
\end{aligned}
$$

Now solve for $y^{\prime \prime}$.
(3) (Final 2012) Find the slope of the tangent line to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.

Solution: We differentiate the equation to get

$$
y^{\prime}+\cos y-x \sin y \cdot y^{\prime}=-\sin x
$$

so that

$$
y^{\prime}=-\frac{\cos y+\sin x}{1-x \sin y}
$$

For $x=0, y=1$ this reads

$$
y^{\prime}=-\frac{\cos 1+\sin 0}{1-0 \sin 1}=-\cos 1
$$

so the tangent line has slope $-\cos 1$.
(4) Find y^{\prime} if $(x+y) \sin (x y)=x^{2}$.

Solution: We differentiate the equation to get

$$
\left(1+y^{\prime}\right) \sin (x y)+(x+y) \cos (x y)\left(y+x y^{\prime}\right)=2 x
$$

that is

$$
y^{\prime}(\sin (x y)+(x+y) \cos (x y) x)=2 x-\sin (x y)+(x+y) \cos (x y) y
$$

and hence

$$
y^{\prime}=\frac{2 x-\sin (x y)+(x+y) \cos (x y) y}{\sin (x y)+(x+y) \cos (x y) x} .
$$

2. Inverse trig functions

(1) (Evaluation)
(a) (Final 2014) Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.

Solution: We need to find θ such that $\sin \theta=\sin \frac{31 \pi}{11}$ and such that $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Now $\sin \left(\frac{31 \pi}{11}\right)=\sin \left(\frac{31 \pi}{11}-2 \pi\right)=\sin \left(\frac{31-22}{11} \pi\right)=\sin \left(\frac{9}{11} \pi\right)$. Also, $\sin (\pi-\alpha)=\sin \alpha$ so

$$
\sin \left(\frac{31}{11} \pi\right)=\sin \left(\frac{9}{11} \pi\right)=\sin \left(\pi-\frac{9}{11} \pi\right)=\sin \left(\frac{2}{11} \pi\right)
$$

But $\frac{2}{11} \pi$ is in the desired range, so $\theta=\frac{2}{11} \pi$.
(b) Find $\tan (\arccos (0.4))$

Solution: Let $0 \leq \theta \leq \pi$ be such that $\cos \theta=0.4$. We need to find $\tan \theta$. First, since $0.4>0$, $0<\theta<\frac{\pi}{2}$ so $\sin \theta>0$. Second, by Pythagoras $\sin ^{2} \theta+\cos ^{2} \theta=1$ so $\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{0.84}$. We conclude that

$$
\tan (\arccos (0.4))=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{0.84}}{0.4} .
$$

(2) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$

Solution: By the chain rule $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))=\frac{1}{\sqrt{1-(2 x)^{2}}} \frac{\mathrm{~d}}{\mathrm{~d} x}(2 x)=\frac{2}{\sqrt{1-4 x^{2}}}$.
(b) Find $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{1+(\arctan (x))^{2}}$.

Solution: By the chain rule,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{1+(\arctan (x))^{2}} & =\frac{1}{2 \sqrt{1+(\arctan (x))^{2}}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[1+(\arctan (x))^{2}\right] \\
& =\frac{1}{2 \sqrt{1+(\arctan (x))^{2}}}(2 \arctan (x)) \frac{\mathrm{d}}{\mathrm{~d} x}[\arctan x] \\
& =\frac{\arctan x}{\sqrt{1+(\arctan (x))^{2}}} \cdot \frac{1}{1+x^{2}} .
\end{aligned}
$$

(c) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

Solution 1: By the chain rule, $y^{\prime}=\frac{1}{\sqrt{1-\left(e^{5 x}\right)^{2}}} e^{5 x} \cdot 5$ so

$$
y^{\prime}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}}
$$

The function $e^{5 x}$ is defined everywhere, but the domain of arcsin is $[-1,1]$ so the domain of y is $\left\{x \mid-1 \leq e^{5 x} \leq 1\right\}$. But $e^{5 x}>0$ always, so the domain is $\left\{x \mid e^{5 x} \leq 1\right\}$ which is exactly $(-\infty, 0]$. The derivative is defined where y is, except when $e^{10 x}=1$ that is except when $x=0$ and its domain is $(-\infty, 0)$.

