MATH 100 - WORKSHEET 8 INVERSE FUNCTIONS

1. More chain rule
$(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$
(1) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$
(b) (Final 2012) $e^{(\sin x)^{2}}$
(2) Is there c such that the function is differentiable for all $x>-1$?

$$
f(x)= \begin{cases}\frac{\cos \left(x^{2}\right)}{x+1} & x \leq 0 \\ c x+x^{2}+1 & x>0\end{cases}
$$

2. Inverse Functions

To find the inverse for $y=f(x)$: (1) "solve for x ", get $x=g(y)(2)$ "exchange x, y " to get $g(x)$.
(1) Find the function inverse to $y=x^{7}+3$.
(2) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.
(a) Find the inverse function, in the form $x=g(y)$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.
(3) Does $y=x^{2}$ have an inverse?

