$\begin{array}{c} {\rm MATH~100-WORKSHEET~8}\\ {\rm INVERSE~FUNCTIONS} \end{array}$

1. More chain rule

f(g(x))' = f'(g(x))g'(x)

- (1) Differentiate
 - (a) $7x + \cos(x^n)$

(b) (Final 2012) $e^{(\sin x)^2}$

(2) Is there c such that the function is differentiable for all x > -1?

$$f(x) = \begin{cases} \frac{\cos(x^2)}{x+1} & x \le 0\\ cx + x^2 + 1 & x > 0 \end{cases}$$

2. Inverse Functions

To find the inverse for y = f(x): (1) "solve for x", get x = g(y) (2) "exchange x, y" to get g(x).

(1) Find the function inverse to $y = x^7 + 3$.

- (2) Consider the function $y = \sqrt{x-1}$ on $x \ge 1$.
 - (a) Find the inverse function, in the form x = g(y).

(b) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$, $\frac{\mathrm{d}x}{\mathrm{d}y}$ and calculate their product.

(3) Does $y = x^2$ have an inverse?