MATH 100 - WORKSHEET 8
 INVERSE FUNCTIONS

1. More chain Rule

(1) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

Solution: $\frac{\mathrm{d}}{\mathrm{d} x}\left[7 x+\cos \left(x^{n}\right)\right] \stackrel{\text { sum }}{=} \frac{\mathrm{d}}{\mathrm{d} x}(7 x)+\frac{\mathrm{d}}{\mathrm{d} x}\left[\cos \left(x^{n}\right)\right] \stackrel{\text { chain }}{=} 7-\sin \left(x^{n}\right) \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{n}\right] \stackrel{\text { power }}{=} 7-n \sin \left(x^{n}\right) x^{n-1}$.
(b) (Final 2012) $e^{(\sin x)^{2}}$

Solution: $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{(\sin x)^{2}}\right] \stackrel{\text { chain }}{=} e^{(\sin x)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[(\sin x)^{2}\right] \stackrel{\text { chain }}{=} e^{(\sin x)^{2}} 2(\sin x) \frac{\mathrm{d}}{\mathrm{d} x}[\sin x]=-2 e^{(\sin x)^{2}} \sin x \cos x$.
(2) Is there c such that the function is differentiable for all $x>-1$?

$$
f(x)= \begin{cases}\frac{\cos \left(x^{2}\right)}{x+1} & x \leq 0 \\ c x+x^{2}+1 & x>0\end{cases}
$$

Solution 1: For $a \neq 0 f$ is defined by a well-behaved formula near a, so $f^{\prime}(a)$ exists (the denominator in the first part only vanishes at $x=-1)$. For $f^{\prime}(0)$ We need to evaluate the limit $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$. Note that $f(0)=\frac{\cos 0}{0+1}=1=c 0+0^{2}+1$ no matter what c is. We now compute separately from the left and the right:

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\left(c h+h^{2}+1\right)-1}{h}=\left.\frac{\mathrm{d}}{\mathrm{~d} x}\right|_{x=0}\left(c x+x^{2}+1\right)=[c+2 x]_{x=0}=c
$$

and
$\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{\frac{\cos \left(h^{2}\right)}{h+1}-1}{h}=\left.\frac{\mathrm{d}}{\mathrm{d} x}\right|_{x=0}\left(\frac{\cos \left(x^{2}\right)}{x+1}\right)=\left[\frac{-2 x \sin \left(x^{2}\right)(x+1)-\cos \left(x^{2}\right) \cdot 1}{(x+1)^{2}}\right]_{x=0}=-1$.
It follows that $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$ exists if and only if $c=-1$.
Solution 2: We first check that f is continuous at $x=0$. Indeed $\lim _{h \rightarrow 0^{-}} f(x)=f(0)=$ 1 since $\frac{\cos \left(x^{2}\right)}{x+1}$ is continuous at $x=0$ (defined by well-defined formula). Also, $\lim _{h \rightarrow 0^{+}} f(x)=$ $\lim _{h \rightarrow 0^{+}}\left(c x+x^{2}+1\right)=c 0+0^{2}+1=1$. We now differentiate both formulas and check that the derivatives match. (justification needed:) Once we know f is continuous this is enough because the derivatives are themselves limits from the right and the left. We have (need to do the computation as in solution 1 above)

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} x}\right|_{x=0}\left(c x+x^{2}+1\right) & =c \\
\left.\frac{\mathrm{~d}}{\mathrm{~d} x}\right|_{x=0}\left(\frac{\cos \left(x^{2}\right)}{x+1}\right) & =-1
\end{aligned}
$$

so the function is differentiable iff $c=-1$.
Remark 2: DO NOT be confused by how we check for continuity and take $\lim _{x \rightarrow 0} f^{\prime}(x)$.

2. Inverse Functions

(1) Find the function inverse to $y=x^{7}+3$.

Solution: We solve for x to get: $x^{7}=y-3$ so $x=(y-3)^{1 / 7}$ and then switch x, y to get

$$
y=(x-3)^{1 / 7}
$$

(can also switch x, y first and then solve).
(2) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.

Date: 6/10/2015, Worksheet by Lior Silberman.
(a) Find the inverse function, in the form $x=g(y)$.

Solution: Solving for x we find $y^{2}=x-1$ so $x=y^{2}+1$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.

Solution: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x-1}}$ while $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{\mathrm{d}}{\mathrm{d} y}\left(y^{2}+1\right)=2 y$ so $\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{2 y}{2 \sqrt{x-1}}=1$ since $y=$ $\sqrt{x-1}$.
(3) Does $y=x^{2}$ have an inverse?

Solution: No, because on its full domain it takes most values twice. For example, $1^{2}=-1^{2}$.

