MATH 100 - WORKSHEET 6 POLYNOMIALS AND EXPONENTIALS

1. Direct problems

Fact. $(f g)^{\prime}=f^{\prime} g+f g^{\prime},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} x^{a}=a x^{a-1} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} e^{x}=e^{x}$.
(1) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2} \cdot f^{\prime}(x)=$
(b) $f(x)=\frac{\sqrt{x}(1-3 x)}{x^{2}+1} \cdot f^{\prime}(x)=$
(c) $f(x)=\frac{x^{2}+x e^{x}}{\cos x+\sin x} \cdot f^{\prime}(x)=$
(1) Simplify $\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7^{3-5}$.
(2) What is $\lim _{h \rightarrow 0} \frac{7^{h}-1}{h}$? This is the derivative of ...
(3) What is the equation of the line tangent the graph $y=3 e^{x}+x$ at the point where $x=-1$?
(4) Let $f(x)=\frac{g(x)}{x}$, where $g(x)$ is differentiable near $x=1$. The line $y=2 x-1$ is tangent to the graph $y=f(x)$ at $x=1$. Find $g(1)$ and $g^{\prime}(1)$.

