MATH 100 - WORKSHEET 5 THE DERIVATIVE

1. Linear combinations; power laws
(1) If f, g are functions and a, b are numbers then $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
(2) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{r}\right)=r x^{r-1} \quad$ (3) $\frac{\mathrm{d}}{\mathrm{d} x}\left(e^{x}\right)=e^{x}$.
(1)
(a) Differentiate $f(x)=\frac{5 x^{3}-2 x+1}{\sqrt{x}}$.
(b) Let $g(x)=A x^{5 / 2}+x^{2}$. Suppose that $g^{\prime}(4)=0$. What is A ?
(2) Find the second derivative of
(a) $5 e^{x}$
(b) $\sqrt{x}+5 e^{x}$
(3) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?
2. The product and quotient rules

Fact. $(f g)^{\prime}=f^{\prime} g+f g^{\prime},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
(1) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{a} e^{x}\right)$.
(2) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.
(3) $f(x)=\frac{x^{2}+A}{\sqrt{x}} \cdot f^{\prime}(x)=$
(4) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

