MATH 100 – WORKSHEET 3 CONTINUITY

1. Continuity

(1) Which of these functions are continuous? Why?

(a)
$$f(x) = \begin{cases} x & x < 0\\ \cos x & x \ge 0 \end{cases}$$

(b)
$$f(x) = \begin{cases} x & x < 0\\ \sin x & x \ge 0 \end{cases}$$

(2) Let
$$f(x) = \frac{x^3 - x^2}{x - 1}$$
.
(a) Why is $f(x)$ discontinuous at $x = 1$?
(b) Find b such that $g(x) = \begin{cases} f(x) & x \neq 1 \\ b & x = 1 \end{cases}$ is continuous everywhere.

(3) Find c, d such that
$$f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1 \\ c & x = 1 \\ d - x^2 & x > 1 \end{cases}$$
 is continuous.

- (4) Where are the following functions continuous? (a) $\frac{x^2+2x+1}{2+\cos x}$
 - (b) $\frac{2+\cos x}{x^2+2x+1}$
 - (c) $\log\left((\sin x)^2\right)$

 $Date:\,17/9/2015,$ Worksheet by Lior Silberman.

(Final 2011) Suppose f, g are continuous such that g(3) = 2 and $\lim_{x\to 3} (xf(x) + g(x)) = 1$. Find f(3).

2. The Intermediate Value Theorem

Theorem. Let f(x) be continuous for $a \le x \le b$. Then f(x) takes every value between f(a), f(b). (1) Show that:

(a) $f(x) = 2x^3 - 5x + 1$ has a zero in $0 \le x \le 1$.

(b) $\cos x = x$ has a solution.

(2) (Final 2011) Let y = f(x) be continuous with domain [0,1] and range in [3,5]. Show the line y = 2x + 3 intersects the graph of y = f(x) at least once.