MATH 100 – SOLUTIONS TO WORKSHEET 1 TANGENT AND VELOCITY PROBLEMS

1. The slope of a graph

Date: 10/9/2015, Worksheet by Lior Silberman.

2. Limits

(1) Evaluate $f(x) = \frac{x-3}{x^2-x-6}$ at x = 2.9, 2.99, 2.999, 3.1, 3.001. What is $\lim_{x\to 3} f(x)$? Solution: (using calculator)

		· · · · ·	0	/					
	x	2.9	2.99	2.999	3.1	3.01	3.001		
	f(x)	0.204	0.2004	2.0004	1.96	1.996	1.9996		
(2) E	valuate							-	
(a) $\lim_{x \to 1} \sin(\pi x)$									
Solution: $\lim_{x \to 1} \sin(\pi x) = \sin(\pi \cdot 1) = \sin \pi = 0.$									
(b) $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$.									
Solution: For $x \neq 1$ we have $\frac{e^x(x-1)}{x^2+x-2} = \frac{e^x(x-1)}{(x-1)(x+2)} = \frac{e^x}{x+2}$ and hence									
			$\lim_{x \to \infty} x ^2$	$\lim_{x \to 1} \frac{e^x(x)}{x^2 + x}$	$\frac{(-1)}{(x-2)} =$	$=\lim_{x\to 1}\frac{1}{x}$	$\frac{e^x}{+2} = \frac{1}{1}$	$\frac{e^1}{e^1} = \frac{e}{3}.$	

(3) Either evaluate the limit or explain why it does not exist

(a)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$.

Solution: From the left we have $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \sqrt{x} = \sqrt{1} = 1$, from the right we have $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2 - x^2) = 2 - 1^2 = 1$ so the limit exists and equals 1.

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$

Solution: We still have $\lim_{x \to 1^-} f(x) = 1$ but now $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4 - x^2) = 3$ and the limit does not exist.