MATH 100 - SOLUTIONS TO WORKSHEET 1 TANGENT AND VELOCITY PROBLEMS

1. The slope of a graph

(1) Find the slope of the line through $P(1,1)$ and $Q\left(x, x^{2}\right)$ where:
(a) $x=3$

Solution: $m=\frac{\Delta y}{\Delta x}=\frac{3^{2}-1}{3-1}=\frac{8}{2}=4$.
(b) $x=1.1$

Solution: $m=\frac{1.1^{2}-1}{1.1-1}=\frac{0.21}{0.1}=2.1$.
(c) $x=1.01$

Solution: (using calculator) $m=\frac{1.01^{2}-1}{1.01-1}=2.01$.
(d) $x=1.001$

Solution: (using calculator) $m=2.001$.
What is the slope of the tangent line at $P(1,1)$? What is its equation?
Solution: $m=2$ so the line has the equation $y=2(x-1)+1$.
(1) Evaluate $f(x)=\frac{x-3}{x^{2}-x-6}$ at $x=2.9,2.99,2.999,3.1,3.01,3.001$. What is $\lim _{x \rightarrow 3} f(x)$?

Solution: (using calculator)

x	2.9	2.99	2.999	3.1	3.01	3.001
$f(x)$	0.204	0.2004	2.0004	1.96	1.996	1.9996

(2) Evaluate
(a) $\lim _{x \rightarrow 1} \sin (\pi x)$

Solution: $\lim _{x \rightarrow 1} \sin (\pi x)=\sin (\pi \cdot 1)=\sin \pi=0$.
(b) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}$.

Solution: For $x \neq 1$ we have $\frac{e^{x}(x-1)}{x^{2}+x-2}=\frac{e^{x}(x-1)}{(x-1)(x+2)}=\frac{e^{x}}{x+2}$ and hence

$$
\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{e^{x}}{x+2}=\frac{e^{1}}{1+2}=\frac{e}{3}
$$

(3) Either evaluate the limit or explain why it does not exist
(a) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.

Solution: From the left we have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=\sqrt{1}=1$, from the right we have $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(2-x^{2}\right)=2-1^{2}=1$ so the limit exists and equals 1 .
(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.

Solution: We still have $\lim _{x \rightarrow 1^{-}} f(x)=1$ but now $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(4-x^{2}\right)=3$ and the limit does not exist.

